

PREDICTION OF RUNOFF AND SEDIMENT YIELD OF OYUN RIVER ILORIN, KWARA STATE.

BY

SALIMAN AYINDE RIDWAN HND/23/CEC/FT/0107

SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING, INSTITUTE OF TECHNOLOGY, KWARA STATE POLYTECHNIC, ILORIN

IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF HIGHER NATIONAL DIPLOMA (HND) IN CIVIL ENGINEERING

JULY 2025.

DECLARATION

I hereby declare that this project work titled PREDICTION	N OF RUNOFF AND
SEDIMENT YIELD OF OYUN RIVER is a work done by me,	SALIMAN AYINDE
RIDWAN with matric number, HND/23/CEC/FT/0107 of the	Department of Civil
Engineering, Institute of Technology, Kwara State Polytechnic, Ilon	rin.
Signature	Date

CERTIFICATION

This is to certify that this research study was conducted by **SALIMAN** AYINDE RIDWAN (HND/23/CEC/FT/0107), and had been and read and approved as meeting the requirement for the award of Higher National Diploma (HND) in civil engineering, Institute of Technology, Kwara State Polytechnic, Ilorin. ENGR. A.W. MANSUR Date **Project Supervisor** ENGR. A. B. NA'ALLAH Date Head of Department ENGR. DR. MUJEDU KASALI ADEBAYO **External Supervisor** Date

DEDICATION

This project is dedicated solemnly to God Almighty, who is the sole inspiration of all things, without whom there would not be, and neither would this project.

Appreciation goes to my loving parents for their support in the fulfilment of my Higher National Diploma (HND) both orally and financially. May God allow them to eat the fruit of their labour (Amen).

AKNOWLEDGEMENT

I begin by expressing my deepest gratitude to the Almighty Allah, who has blessed me with the wisdom, strength, and resilience to complete this project.

I extend my sincere appreciation to my project supervisor, Engr. A.W. MANSUR for his invaluable guidance, support, and encouragement throughout this journey. His expertise and constructive feedback were instrumental in shaping this project.

To my family, I express my heartfelt gratitude for their unwavering support and love to My Late Dad Mr. Saliman Amuda Yusuf, who made me choose this interesting course, and Mom, Mrs. Saliman Ajoke Balikis, my dearest brother and sisters, saliman Abdullah saliman Aishat, Saliman Ramat, Saliman Fatia, Saliman Muslimat, who motivates me to make this milestone a success, thank you for being a constant source of motivation, encouragement and financial support. I appreciate your love.

To my beloved father who is always be there for me through all my success, Alhaji, Alli Rabiu Waheed and his wifes, Alhaja Mrs Alli Halimat and Mrs Alli Medinat, thank you for your patience, understanding, support, and financial support. You are my rock, and I am grateful for your love.

I also acknowledge the entire staffs of the department of Civil Engineering in the Institute of Polytechnic, Ilorin, for their dedication, enlighten and support towards the success of my academics.

My gratitude also goes to my brothers and sisters, Opeloyeru Ibrahim, Alli Abiodun Alli, Abdulwaheed Abdulsamod, Alli Mubarak, Adeyinka Ibrahim, Adetunji Abdulazeez, Tajudeen lawal, Alli Adam, Alli Kamaldeen, Mrs Abdulazeez Mariam, Alli Muslimat, Alli Fatimah, Alli Munirat, Alli hameedah and Kayode Memunat. I really appreciate your support and your love.

To my friends, guardians and colleagues, Bamidele Sijibomi Johnson, Kayode John Kehinde, Ibironke Taiye Pelumi, Saad Bashir, Atoyebi Abdulqudus, Ajibola Patrick, Shuaib Abdulwasiu, Akanni Musa Olamilekan and many others that their names could not be mentioned, I appreciate your encouragement, advice, and camaraderie. Thank you all for being part of my journey.

TABLE OF CONTENTS

Title	e page		
Decl	aration	i	
Cert	Certification		
Dedi	ication	iii	
Ackı	nowledgement	iv	
Tabl	le of Contents	v	
Abst	tract	vii	
CHA	APTER ONE		
1.0	INTRODUCTION	1	
1.1	Background of the study	1	
1.2	Problem Statements	4	
1.3	Aim of the study	4	
1.4	Objectives of the Study	4	
1.5	Justification of the study	5	
1.6	Scope and Limitations of the Study	5	
CHA	APTER TWO		
2.0	LITERATURE REVIEW	7	
CHA	APTER THREE		
3.0	METHODOLOGY	18	
3.1	Description of the Area	18	
3 2	Digital Flevation of the Model (DFM)	19	

3.3	Land Use	19
3.4	Soil Map	20
3.5	Data Collection	21
3.6	Development of Hydrological Model	22
	3.6.1 SWAT Project setup	22
	3.6.2 Watershed delineation	22
	3.6.3 HRU Analysis	23
	3.6.4 Write Input Weather Data	23
	3.6.5 SWAT Run	23
СНА	APTER FOUR	
4.0	RESULTS AND DISCUSSIONS	25
4.1	Hydrological Model Development	25
4.2	Runoff Prediction and Sediment Prediction	26
	4.2.1 Study Area Runoff Prediction	26
	4.2.2 Study Area Sediment Prediction	27
4.3	Spatial Analysis of Runoff and Sediment Yield	28
	4.3.1 Spatial Variation Analysis	36
СНА	APTER FIVE	
5.0	CONCLUSION AND RECOMMENDATION	40
5.1	Conclusion	40
5.2	Recommendation	41
REF	FERENCES	42

ABSTRACT

This study focuses on predicting runoff and sediment yield within the Oyun River Watershed in Ilorin, Kwara State, Nigeria, using the Soil and Water Assessment Tool (SWAT). Driven by the increasing challenges posed by urbanization, land use change, and soil erosion, the research aims to provide a hydrological model capable of forecasting water flow and sediment transport in the watershed. The methodology involves integrating spatial data such as Digital Elevation Models (DEMs), land use and soil maps, alongside temporal climate data including precipitation, temperature, and solar radiation. The watershed was delineated into 14 sub-basins for detailed analysis.

Model simulations indicated significant spatial variation in both runoff and sediment yield across the sub-basins, with Sub-basins 1, 4, 7, and 8 recording the highest flow volumes, while smaller sub-basins like 10 and 11 exhibited higher sediment concentrations, signaling localized erosion risk. The findings underscore the impact of land cover and topography on hydrological behavior, providing essential insights for flood management, soil conservation, and sustainable watershed planning. The study concludes with recommendations for improved land use practices, stakeholder engagement, and continuous monitoring to mitigate erosion and enhance water resource management in the region.

CHAPTER ONE

1.0 Background of the Study

Storm water is a form of water generated as a result of all forms of precipitation such as rain, sleet, or melting snow. In an ideal situation, only a small percentage of storm water becomes surface runoff. This runoff usually flows into the nearest stream, creek, river, lake, or wetland. Runoff can cause problems like erosion of stream banks, flood increase and reduction in water quality (Agouridis et al., 2013). Due to the rapid global urbanization, the natural land covers are tending to be impervious and degrading the natural environment which increase runoff and peak flows that cause flash flooding, affect water quality and other water related problems (Dientz, 2007).

Previously, the control schemes of urban flooding were focused on drainage which facilitates global construction of drainages to arrest flood problems but study by Agouridis et al. (2013) revealed that construction of drainages cannot solve the fundamental problem of flooding. Specifically, conventional storm water management approaches have focused on removing storm water as promptly as possible in order to mitigate the impacts of flooding in a particular watershed.

However, the use of pipeline drainage system has usually caused an increase in the discharge and velocity of runoff which poses danger to the downstream part of the water

bodies in form of flooding. It is quite noted that the generated runoff carries along sediments which have great impacts on water quality, water reservoir capacity, and agricultural productivity of such area (Gyamfifi et al., 2016). The sediment in a large quantity known as sediment yield is transported from one location to another over a given period of time and it is usually expressed as tonnes per year (White, 2005).

The negative impact of land cover change to the natural environmental especially in watershed ecosystems have been a widely recognized problem throughout the world. Forest cover reduction through deforestation and conversation for agricultural purposes can alter a watershed's response to rainfall events, that often leads to increased volume of surface runoff and greatly increase the incidence of flooding and sedimentation of receiving water bodies (McColl and Aggett, 2007).

Negative effects of surface runoff and soil erosion in watersheds can be controlled and mitigated through hydrological models. Moreover, they are suitable to simulate various combinations of different scenarios of land and water management in a watershed and therefore they are useful for comparative analysis of different options and as a guide to what Best Management Practices (BMPs) can be adopted to minimize pollution from point and nonpoint sources (Shrestha et al., 2006).

Continuous simulation models (e.g. AnnAGNPS, WEPP, SWAT, etc.) provide great advantages over event-based models as they allow watersheds and their response to be studied over a longer time period in an integrated way. Nowadays, several continuous watershed scale erosion models are available: however, relatively little validation of their performance under varying climatic and land use conditions has been carried out. The latter is an essential step before a model can be reliably applied.

Water-based soil erosion and soil sedimentation are two of the most serious environmental problems facing the world today and through this many landscapes across the globe have been adversely affected. While soils have always been subject to erosion by forces of nature, such as water, wind, and ice, the process has been greatly accelerated by human activities such as deforestation, agricultural expansion, and construction. These have increased the rate of erosion from two to 40000 fold Goldman et al., 1986).

Consequently, huge amounts of upland soil and sediment are displaced and transported down to lowland areas and into water bodies downstream, causing sedimentation. The process of soil erosion takes place as a result of a complex interaction between several factors, including climate patterns, topography, soil properties, and land use/cover. As the process is dominated by natural variability, predicting sedimentation rates is a challenging task. In the past, soil erosion was mostly studied on a plot-scale, whereby a number of long term experiments were conducted to determine the relationship

between soil erosion and pertaining factors such as climate, soil types, crops, and topography. Such experiments were often expensive to conduct and required vast human resources.

However, in recent years soil erosion and transported sediment have been predicted using erosion models that simulate the processes of soil erosion, land management, and soil conservation without the need for time-consuming and costly experiments. Erosion model shave increasingly been attributed to the fast growth of both geographic information systems (GISs) and computer technology and a number of models have been applied to investigate erosion problems in various regions around the world. AGNPS2, ANSWER3, EUROSEM4, LISEM5, SWAT6, and other such models have been used to simulate not only sediment discharge but also water quality problems in a number of watersheds.

One of the most commonly used erosion models is the Soil and Water Assessment Tool (SWAT) is a public domain watershed scale model developed to predict the effects of land management on water, sediment, nutrients, pesticides, and agricultural chemicals in small to large complex basins. It is a physically based, semi-distributed parameter model with a robust hydrologic and pollution model that has been successfully employed in a number of watersheds. SWAT has been applied in a number of watersheds.

Most previous studies focused on stream flow predictions, with average monthly stream flows being used mostly to calibrate and validate the model8–11. Applications of SWAT have expanded worldwide over the past decade, especially in the US and Europe12, but there is still a paucity of SWAT research on predicting sediment discharge in tropical countries like Thailand. This may be due to the lack of temporal and spatial scale data used for modelling watershed hydrology and sediment in tropical regions.

The Oyun River Watershed in Ilorin, Kwara State, Nigeria, is a vital water resource for the region, providing water for domestic, agricultural, and industrial purposes. With rapid urbanization and changing land use patterns, the watershed is experiencing significant alterations in its hydrological and sediment transport dynamics. Predicting runoff and sediment yield in this watershed is crucial for effective water resource management and mitigating the adverse effects of urbanization and climate change.

1.1 Problem Statement

The Oyun River Watershed faces challenges such as increased runoff, flooding, and sedimentation due to urbanization and deforestation. These issues impact water quality, aquatic habitats, and infrastructure. There is a need for a comprehensive study to predict runoff and sediment yield to inform sustainable watershed management practices.

1.2 Aims of the study

The aim of this study is to predict runoff and sediment yield in Oyun River.

The objectives are to:

- i. Developed a hydrological model of Oyun River.
- ii. Predict runoff and sediment yield in the Oyun River Watershed using the Soil and Water Assessment Tool (SWAT).
- iii. Evaluate spatial variations of sediment yield and runoff.

1.3 Justification of the Study

This study predict runoff and sediment yield in Oyun River in using the SWAT model, is vital due to its environmental and socioeconomic significance. It helps maintain hydrological balance, support ecosystems, and ensure water supply for Ilorin's domestic, agricultural, and industrial needs. By understanding and managing runoff and sedimentation, the study aims to preserve water quality, protect habitats, and enhance agricultural sustainability. It addresses the impacts of rapid urbanization, providing insights for sustainable urban planning and infrastructure development.

Additionally, the study is crucial for flood control and disaster management, aiding in accurate runoff prediction and effective risk assessment. It contribute to scientific advancements, support informed policy-making, and promote sustainable development by balancing urban growth with environmental protection. Engaging local communities and

stakeholders will raise awareness about watershed management, fostering responsibility and ensuring the watershed's long-term sustainability.

1.4 Scope of the Study

The scope of this project on predicting runoff and sediment yield in the Oyun River Watershed was carried out using the SWAT model and also include defining the study area, collecting and analysing hydrological and geospatial data, and setting up and validating the SWAT model. The project will simulate various land use scenarios to assess their impacts on runoff and sediment yield, and provide recommendations for sustainable watershed management and urban planning.

Additionally, the project involved engaging with local stakeholders to raise awareness and ensure the implementation of recommended practices. The deliverables include a comprehensive technical report and GIS-based maps and visualizations. The project timeline cover phases such as data collection, model setup, validation, scenario analysis, and reporting, with key milestones to track progress.

CHAPTER TWO

LITERATURE REVIEWS

S/N	TITLES	AUTHOR(S)	CORE FINDINGS	RESEARCH
				GAPS
1	Comparison of soil	Pengfei Li, et	The study compared	The study
	erosion models used	al. (2021)	various soil erosion	identified the
	to study the Chinese		models and found	need for
	Loess Plateau		that certain models	integrating more
			performed better in	field data to
			specific conditions.	improve model
			It highlighted the	accuracy and the
			effectiveness of	requirement for
			different models in	long-term
			predicting soil	monitoring data.
			erosion on the Loess	
			Plateau.	
2	Rainfall-Runoff	Seifu Kebede	The SWAT model	The study noted
	Modeling and Its	Debela, et al.	was used to	the need for more
	Prioritization at Sub-	(2020)	prioritize sub-	detailed spatial
	Watershed Level		watersheds based on	data and the
	Using SWAT		runoff potential,	integration of
	Model: A Case of		showing variability	land use changes
			in runoff and	over time to

	Finca'aa, Oromia,		sediment yield	improve model
	Western Ethiopia		across different sub-	predictions.
			watersheds.	
3	Assessment of	Kamel	The SWAT model	Highlighted the
	Sediment Yield	Khanchoula,	accurately simulated	need for better
	Using SWAT	et al. (2019)	sediment yield in the	calibration
	Model: Case Study		Kebir watershed,	techniques and
	of Kebir Watershed,		identifying critical	more precise
	Northeast of Algeria		areas prone to	input data to
			erosion.	enhance model
				performance.
4	Using SWAT Model	Nasrin Zalaki-	The SWAT model	The study called
	to Determine	Badil, et al.	was effective in	for the inclusion
	Runoff, Sediment	(2022)	predicting runoff	of more recent
	Yield in Maroon-		and sediment yield,	climate data and
	Dam Catchment		emphasizing the	the need to
			impact of land use	account for
			changes on	human activities
			hydrological	affecting runoff
			processes.	and sediment
				yield.
5	Evaluation of	Marzia	The AnnAGNPS	Suggested further
	AnnAGNPS Model	Tamanna, et	model provided	refinement of the
	for Runoff	al. (2020).	accurate runoff	model to include
	Simulation on		simulations,	snowmelt

	Watersheds from		demonstrating its	processes and
	Glaciated Landscape		applicability in	better
	of USA Midwest and		glaciated	representation of
	Northeast		landscapes.	land use practices.
6	Using the WEPP	Alaaddin	The WEPP model	Identified the
	Model to Predict	Yüksel, et al.	successfully	need for more
	Sediment Yield in a	(2019).	predicted sediment	comprehensive
	Sample Watershed		yield in the	soil data and the
	in Kahramanmaraş		Kahramanmaraş	inclusion of
	Region		region, indicating	vegetation cover
			areas with high	changes in the
			erosion potential.	model.
7	Estimation of	Olaniyan O.	Combined SCS	Recommended
	Runoff from River	S., et al.	Curve Number	the integration of
	Asa Watershed	(2023)	method with GIS to	more precise land
	Using SCS Curve		estimate runoff,	use and soil data
	Number and		showing the spatial	to improve runoff
	Geographic		variability of runoff	estimates.
	Information System		in the Asa River	
	(GIS)		watershed.	
8	Assessment of Soil	Chen P., et al.	The study assessed	Called for the
	Loss from Land	(2021)	soil loss due to land	inclusion of more
	Use/Land Cover		use changes and	detailed temporal
	Change and		natural disasters,	data on land use
	Disasters in the		highlighting	changes and

	Longmen Shan		significant soil	disaster
	Mountains, China		erosion in areas	occurrences.
			affected by	
			landslides.	
9	Prediction of	Demetrio	The AnnAGNPS	Suggested the
	Surface Runoff and	Antonio	model was effective	need for
	Soil Erosion at	Zema, et al.	in predicting runoff	improved
	Watershed Scale:	(2020)	and soil erosion	calibration
	Analysis of the		across different	techniques and
	AnnAGNPS Model		environmental	more accurate
	in Different		conditions.	representation of
	Environmental			soil properties.
	Conditions			
10	Geospatial Analysis	Pradeep	Geospatial analysis	The study
	of Soil Erosion and	Rawat, et al.	identified areas at	highlighted the
	Associated	(2018)	high risk of soil	need for long-
	Geomorphic		erosion and	term monitoring
	Hazards to Avert		geomorphic hazards,	and more detailed
	Increasing Disaster		suggesting	geospatial data.
	Risk in		mitigation measures.	
	Environmentally			
	Stressed Eastern			
	Himalaya Region			
11	Geospatial Analysis	Pradeep	The study used	The research
	of Soil Erosion and	Rawat,	geospatial analysis	highlighted the

	Associated	Khrieketouno	to identify soil	need for long-
	Geomorphic	Belho, M.	erosion hotspots and	term data
	Hazards to Avert	Rawat	associated	collection and
	Increasing Disaster		geomorphic hazards	integration of
	Risk in		in the Eastern	more detailed
	Environmentally		Himalaya region,	geospatial data to
	Stressed Eastern		suggesting	improve hazard
	Himalaya Region		mitigation strategies	prediction
			to reduce disaster	accuracy.
			risk.	
12	Prediction of	Prabhat	The study modeled	Suggested the
	Sediment Erosion	Chandra, et al.	sediment erosion	need for higher-
	Pattern in Upper	(2022).	patterns in the Upper	resolution data
	Tapi Basin, India		Tapi Basin,	and further
			identifying key areas	validation of the
			contributing to	model with field
			sediment yield.	observations.
13	Predicting Sediment	Puwadon	The research applied	Recommended
	Discharge in an	Phomcha, et	a sediment discharge	incorporating
	Agricultural	al. (2016)	model in the Lam	climate change
	Watershed: A Case		Sonthi watershed,	scenarios and
	Study of the Lam		demonstrating the	more diverse land
	Sonthi Watershed,		impact of	use data to
	Thailand		agricultural	enhance model
				robustness.

			activities on	
			sediment yield.	
14	Simulation of	Adeniyi	The SWAT model	The study
	Sediment Yield at	Ganiyu	was used to simulate	suggested the
	the Upstream	Adeogun, et	sediment yield in the	need for
	Watershed of Jebba	al. (2018).	upstream watershed	improved soil
	Lake in Nigeria		of Jebba Lake,	data and more
	Using SWAT Model		identifying areas	comprehensive
			with high erosion	land use
			potential.	information to
				refine the model's
				predictions.
15	Sustainable	Ganiyu H. O.,	The study assessed	Identified the
	Management of	et al. (2020).	the impact of	need for ongoing
	Runoff and		urbanization on	monitoring and
	Sediment Yield in a		runoff and sediment	the inclusion of
	Rapidly Urbanizing		yield in Malete,	more detailed
	Residential Area: A		proposing	urbanization data.
	Case Study of		sustainable	
	Malete, Kwara State,		management	
	Nigeria		practices to mitigate	
			adverse effects.	
16	Using SWAT Model	Chunying	The SWAT model	Highlighted the
	to Predict Water	Wang, et al.	was effective in	need for more
	Flow, Sediment, and	(2017).	predicting water	precise land cover

	Nutrients Loads in		flow, sediment, and	data and the
	Shibetsu River		nutrient loads,	inclusion of
	Watershed, Eastern		emphasizing the	seasonal
	Hokkaido, Japan		importance of land	variations in the
			management	model.
			practices.	
17	A Comparison of	Patricia	The study compared	Suggested further
	Performance of	Jimeno-Sáez, et al. (2022).	SWAT and machine	integration of
	SWAT and Machine	, ,	learning models,	machine learning
	Learning Models for		finding that machine	techniques with
	Predicting Sediment		learning models	hydrological
	Load in a Forested		often outperformed	models to
	Basin, Northern		SWAT in predicting	improve
	Spain		sediment load.	prediction
				accuracy.
18	Assessing Soil	Sumudu	The research used	Recommended
	Erosion Hazards	Senanayake, et al. (2020).	land-use change and	the inclusion of
	Using Land-Use		landslide frequency	more
	Change and		ratio methods to	comprehensive
	Landslide Frequency		assess soil erosion	landslide data and
	Ratio Method: A		hazards, identifying	long-term land-
	Case Study of		critical areas prone	use change
	Sabaragamuwa		to erosion.	analysis.
	Province, Sri Lanka			

19	Evaluation of	Latif Kalin, et	The study evaluated	Identified the
	Sediment Transport	al. (2016).	various sediment	need for better
	Models and		transport models,	model calibration
	Comparative		comparing their	and more detailed
	Application of Two		performance in	watershed data to
	Watershed Models		different watershed	improve model
			conditions.	performance.
20	Application of	M. E.	The SWAT model	Suggested further
	SWAT Model to	Mohammad,	effectively estimated	refinement of
	Estimate the Annual	et al. (2021).	annual runoff and	input data and
	Runoff and		sediment yield,	incorporation of
	Sediment of Duhok		highlighting areas of	more recent land
	Reservoir Watershed		high erosion	use changes for
			potential.	better model
				accuracy.
21	Regional Soil	Shuiqing Yin,	The study used	Highlighted the
	Erosion Assessment	et al. (2022)	sample surveys and	need for more
	Based on Sample		geostatistics to	comprehensive
	Survey and		assess soil erosion	survey data and
	Geostatistics		on a regional scale,	the integration of
			identifying key	remote sensing
			erosion-prone areas.	techniques.
22	Assessment of Soil	Imad Fenjiro,	The RUSLE model,	Suggested the
	Erosion by RUSLE	et al. (2019).	combined with	need for higher-
	Model Using		remote sensing and	resolution

	Remote Sensing and		GIS, effectively	satellite data and
	GIS - A Case Study		assessed soil erosion	the inclusion of
	of Ziz Upper Basin		in the Ziz Upper	more detailed
	Southeast Morocco		Basin.	land management
				practices.
23	Performance	Gebremedhin	The review	Recommended
	Evaluation of	Kiros, et al.	evaluated the SWAT	the integration of
	SWAT Model for	(2023).	model's performance	more detailed
	Land Use and Land		in semi-arid regions,	climate data and
	Cover Changes in		emphasizing the	long-term land
	Semi-Arid Climatic		impact of land use	use change
	Conditions: A		and cover changes	analysis.
	Review		on hydrological	
			processes.	
24	Runoff and	Ossama M.	The study modeled	Highlighted the
	Sediment Yield	M.	runoff and sediment	need for more
	Modeling in a	Abdelwahab,	yield in a	detailed soil and
	Medium-Size	et al. (2019).	Mediterranean	vegetation data to
	Mediterranean		watershed,	improve model
	Watershed		identifying key	predictions.
			factors influencing	
			sediment yield.	
25	A Spatial Decision	Yanxin Duan,	The study developed	Suggested further
	Support System for	et al. (2021).	a spatial decision	refinement of the
	Economic Analysis		support system to	economic models

	of Sediment Control		economically	and the inclusion	
	on Rangeland		analyze sediment	of more	
	Watersheds		control measures on	comprehensive	
			rangeland	sediment data.	
			watersheds.		
26	Predicting Runoff		The SWAT model	Recommended	
	and Sediment Yields		was effective in	the integration of	
	Using SWAT Model		predicting runoff	more detailed soil	
	in the Jemma		and sediment yields	and climate data	
	Subbasin of Upper		in the Jemma	to improve model	
	Blue Nile, Central		Subbasin,	accuracy.	
	Ethiopia		identifying areas of		
			high erosion		
			potential.		
27	Storm-Wise	Somayeh	The study applied a	Recommended	
	Sediment Yield	Fazli, et al.	hillslope erosion	further validation	
	Prediction using	(2021).	model to predict	with more diverse	
	Hillslope Erosion		sediment yield	storm events and	
	Model in Semi-Arid		during storm events	incorporation of	
	Abundant Lands		in semi-arid regions,	vegetation cover	
			highlighting the	data.	
			model's		
			effectiveness in		
			capturing sediment		
			dynamics.		

28	Simulation of	Olotu Yahaya,	The research	Suggested the
	Runoff and	et al. (2022).	compared SWAT	need for
	Sediment Load for		and WEPP models	improved
	Reservoir		in simulating runoff	calibration of
	Sedimentation of		and sediment load	models and
	River Ole Dam using		for reservoir	incorporation of
	SWAT and WEPP		sedimentation,	more detailed soil
	Models		finding differences	and land use data
			in their predictions.	
29	Runoff and	H. Ahmadia,	WEPP model was	Highlighted the
	Sediment Yield	et al. (2020).	used to simulate	need for higher-
	Modeling using		runoff and sediment	resolution input
	WEPP in a Semi-		yield in Orazan	data and more
	Arid Environment		Watershed,	comprehensive
	(Case study: Orazan		effectively	validation with
	Watershed)		identifying erosion-	field data.
			prone areas.	
30	Watershed Sediment	A. R.	The study predicted	Suggested further
	Yield Prediction for	Sepaskhah, et al. (2019).	sediment yield in	research on the
	Soils Containing		watersheds with	impact of
	Rock Fragments		soils containing rock	different types of
			fragments,	rock fragments
			emphasizing the	and their
			influence of rock	distribution.

			fragments on	
			erosion processes.	
31	Predicting Soil	Joris de Vente,	The review	Recommended
	Erosion and	et al. (2013)	evaluated current	integration of
	Sediment Yield at		methods for	more diverse data
	Regional Scales:		predicting soil	sources and
	Where Do We		erosion and	improvement of
	Stand?		sediment yield at	model scalability.
			regional scales,	
			identifying strengths	
			and limitations of	
			various models.	
32	Evaluation of ANN,	Sanoj Kumar,	The study compared	Suggested further
	M5P, RBF, Reptree for Runoff and	et al. (2021).	different machine	optimization and
		learning models	combination of	
	Sediment Yield		(ANN, M5P, RBF,	models to
			Reptree) for	improve
			predicting runoff	prediction
			and sediment yield,	accuracy.
			finding varied	
			performance across	
			models.	
33	Predicting Soil	Richarde	The study applied	Highlighted the
	Erosion and	Marques da Silva, et al.	erosion models to	need for more
	Sediment Yield in	(2020).	predict soil erosion	detailed land use

	the Tapacurá		and sediment yield	and climate data
	Catchment, Brazil		in the Tapacurá	to refine
			Catchment,	predictions.
			demonstrating	
			effective model	
			performance.	
34	Runoff and	Sunya	The study used	Recommended
	Sediment Yield	Sarapirome, et al. (2019).	distributed	further refinement
	Estimation using		geospatial models to	of geospatial data
	Distributed		estimate runoff and	and incorporation
	Geospatial Models		sediment yield in an	of more detailed
	for Agricultural		agricultural	agricultural
	Watershed in		watershed,	practices.
	Thailand		identifying key	
			contributing areas.	
35	Runoff and	Otieno	The WEPP model	Suggested the
	Sediment Yield	Hesbon, et al. (2017).	effectively	inclusion of more
	Modeling using		simulated runoff and	detailed soil and
	WEPP in a Semi-		sediment yield,	vegetation data to
	Arid Environment		identifying critical	enhance model
	(Case study: Orazan		areas for soil	accuracy.
	Watershed)		conservation efforts.	
36	Coupling	Dar Sarvat Gull,	The study coupled	Recommended
	Agricultural Non-	et al. (2022).	AgNPS model with	further refinement
	Point Source		GIS tools to predict	of GIS data and

	(AgNPS) Model and		peak runoff and	validation with
	Geographic		sediment generation,	more
	Information System		highlighting	comprehensive
	(GIS) Tools to		effective integration	field data.
	Predict Peak Runoff		of technologies.	
	and Sediment			
	Generation in the			
	Upper River Njoro			
	Catchment in Kenya			
37	Modeling Runoff	Eduardo E. de	The study applied	Suggested the
	and Sediment Yield	Figueiredo, et al. (2018).	the SWAT model to	need for higher-
	in Highly Gullied	, ,	predict runoff and	resolution input
	Regions of Kashmir		sediment yield in the	data and more
	using SWAT Model:		highly gullied	extensive field
	A Case Study of		regions of the Lolab	validation to
	Lolab Watershed		watershed,	improve model
			demonstrating the	predictions.
			model's capability in	
			such terrains.	
38	Runoff and	Vishal Singh, et	The research used	Recommended
	Sediment Yield	al. (2024).	the SHETRAN	further research
	Predictions in a		model to predict	into the model's
	Semiarid Region of		runoff and sediment	application in
	Brazil using		yield in a semiarid	different climatic
	SHETRAN		region of Brazil,	conditions and the

			highlighting the	incorporation of
			model's	more detailed
			effectiveness in	land use data.
			capturing	
			hydrological	
			processes in such	
			environments.	
39	Response of	•	The study	Suggested further
	Hydrological	et al. (2000).	investigated the	research into the
	Factors and		hydrological factors	impact of climate
	Relationships		affecting runoff and	change on
	between Runoff and		sediment yield in the	hydrological
	Sediment Yield in		Satluj River sub-	factors and
	the Sub Basin of		basin, identifying	sediment yield.
	Satluj River,		key relationships	
	Western Himalaya,		between these	
	India		variables.	
40	Erosion and	Sanoj Kumar,	The review provided	Identified the
	Sediment Yield: A	et al. (2021).	a comprehensive	need for more
	Global Overview		overview of global	localized studies
			erosion and	and the
			sediment yield	integration of new
			patterns,	technologies and
			highlighting	methodologies in
			regional differences	erosion and

	and	the	factors	sediment	yield
	influe	encing	these	research.	
	proce	sses.			

CHAPTER THREE

3.0 **METHODOLOGY**

3.1 **Description of the Study Area**

Oyun River, a prominent waterway located in Kwara State, one of Nigeria's 36 states, meanders through a diverse landscape, traversing several local government areas including Ifelodun, Irepodun, Asa, Oyun, and Ilorin East. This river, with its extensive network and intricate ecosystem, plays a pivotal role in shaping the geography and livelihoods of the region's inhabitants. Its waters serve as a vital resource for agriculture, providing sustenance to local communities and contributing significantly to the state's economic activities.

Moreover, the Oyun River holds cultural and historical significance, often intertwined with the traditions and heritage of the local population. As the focus of hydrological research and analysis, this river's intricate dynamics will be thoroughly examined to gain a comprehensive understanding of its flow patterns, contributing to informed decision-making and sustainable management of this vital natural resource. Figure 3-1 shows the map of the study area

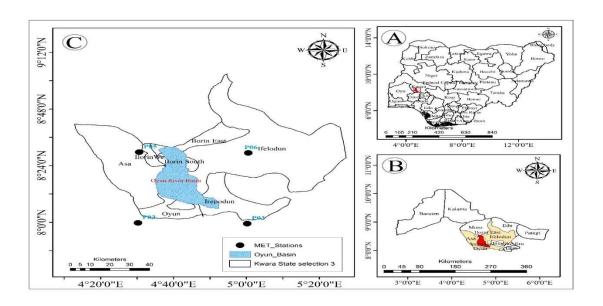


Figure 3.1: Map of the Study Area

3.2 Digital Elevation Model (DEM)

The Digital Elevation Model (DEM) for the Oyun River area in Kwara State offers a detailed representation of the region's topography. With elevation values ranging from 283 meters at the lower end to 565 meters at the higher elevations, this DEM provides a comprehensive spatial understanding of the landscape's relief, aiding in the assessment of drainage patterns, slope analysis, and terrain characteristics crucial for hydrological modeling and watershed management.

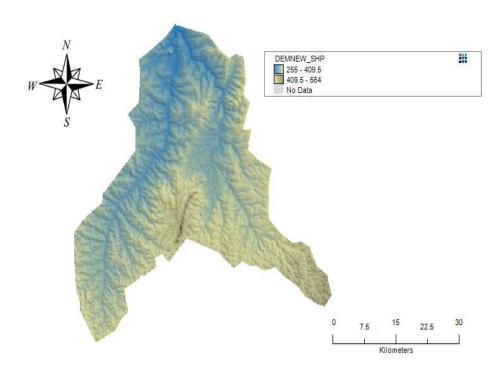


Figure 3.2 DEM map of the study area.

3.3 Land use map

This is a map of the different types of land use and land cover in the basin, such as forests, croplands, and urban areas. It is used to determine the amount of water that is intercepted by vegetation, as well as the amount that infiltrates into the soil. The Land use map that is needed to run SWAT was extracted from the Global Land Cover Characterization (GLCC) database, and it is also used to estimate vegetation and other parameters representing the watershed area. The GLCC database was developed by United State Geological Survey and has a spatial

resolution of 1Km and 24 classes of land use representation (GLCC (2012) Assessed on 8th May 2013). Land use map of the study area is shown in figure 3.3 shows information on land use/cover of the study area.

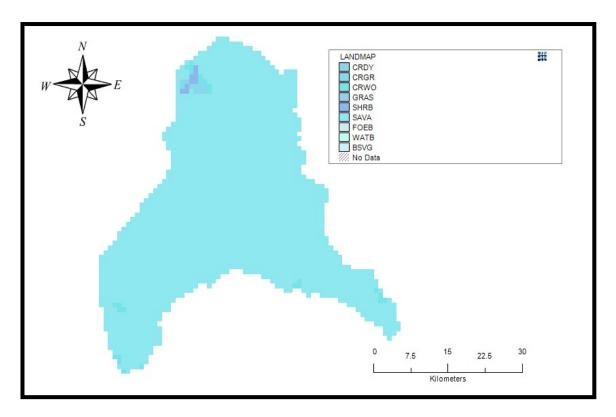


Figure 3.3: Land use map of the study area

3.4 Soil Map

This is a digitize soil data of the different types of soil in the basin, including information on soil texture, depth, and water-holding capacity. It is used to determine how much water can be

stored in the soil, as well as how quickly water can move through the soil. The digital soil data for the study was extracted from harmonized digital soil map of the world (Harmonized World Soil Database (HWSD)) produced by Food and Agriculture Organization of the United Nations, Rome (Nachtergaele et al., 2009). 16 soil samples were collected from two different layers (0 - 30 cm and 30 - 100 cm depth)and the samples were analyzed and used to update the model parameters. Figure 3.6 shows the information of soil data/soil map.

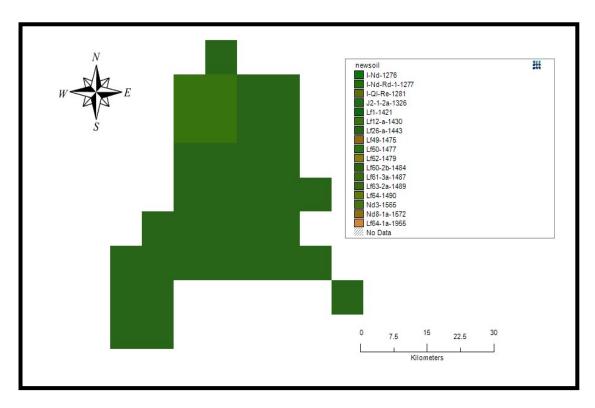


Figure 3.4: Soil map of the study area

3.5 Data Collection

Data collection for this comprehensive study involves gathering both spatial and temporal data to provide a well-rounded understanding of environmental dynamics. Spatial data includes essential elements such as the Digital Elevation Model (DEM) for mapping topographic features, Land Use data to analyze land cover patterns, and Soil Texture information for soil characterization. These spatial datasets form the basis for examining terrain, land suitability, and ecosystem health.

On the temporal side, the study also incorporates dynamic variables such as temperature, precipitation, relative humidity, solar radiation, and wind speed. This temporal data offers insights into seasonal and climatic fluctuations, allowing researchers to explore the complex interactions between spatial and temporal factors, thereby contributing to a thorough evaluation of environmental processes and changes over time.

3.6 Development of Hydrological Model

The Soil and Water Assessment Tool (SWAT) is a widely used hydrological model, and the SWAT 2009 extension provides a convenient interface for users within the mapwindow GIS environment. Let's delve into the five major steps involved in SWAT 2009

3.6.1 SWAT Project Setup

The initial step in utilizing SWAT 2009 involves setting up the SWAT project within the map window GIS environment. This includes defining the project area, specifying the projection and coordinate system, and establishing the simulation period. Users also input information regarding land use, soil, and management practices. The spatial data layers, such as digital elevation models (DEMs), land use maps, and soil databases, are integrated into the SWAT project to provide the necessary geospatial context for hydrological modelling. This step lays the foundation for subsequent analyses by organizing the key components of the study area and configuring the SWAT model parameters.

3.6.2 Watershed Delineation

Once the project is set up, watershed delineation is performed to identify the drainage areas within the defined project boundary. This step utilizes digital elevation data to delineate the watershed and sub-watersheds. The process involves the creation of a stream network, delineation of watershed boundaries, and determination of flow directions. The resulting watershed delineation provides a spatial framework for further analysis, enabling the subdivision of the study area into hydrologically meaningful units. Watershed delineation is crucial for understanding the flow of water within the landscape

and serves as the basis for subsequent Hydrologic Response Unit (HRU) analysis. Figure 3-2 shows the data entry requirement for watershed delineation in SWAT2009.

3.6.3 HRU Analysis

Hydrologic Response Units (HRUs) are essential elements of the SWAT model, representing areas within a watershed that are spatially uniform in terms of hydrology. In this phase, SWAT 2009 refines the watershed boundaries by identifying HRUs based on land use, soil type, and slope. This tool integrates these factors to delineate HRUs with similar hydrological characteristics. Each HRU acts as an individual unit for modeling various hydrological processes, providing a more nuanced depiction of landscape variability. Analysing HRUs is vital for understanding the complex interactions between land cover, soil properties, and topography, thereby improving the accuracy of hydrological simulations.

3.6.4 Write Input Weather Data

Once the watersheds and HRUs are defined, the next step is to prepare and input weather data into the SWAT model. SWAT 2009 facilitates this by allowing users to import meteorological data, including precipitation, temperature, solar radiation, and wind speed. The accuracy of the model is significantly affected by the temporal and spatial resolution of the weather data, and SWAT 2009 provides tools to ensure that weather input

files are properly formatted and organized. Accurate representation of climate variables is crucial for realistic simulation of hydrological processes, and this step guarantees that the SWAT model receives comprehensive meteorological information.

3.6.5 SWAT Run

The ultimate phase entails the execution of the SWAT model to simulate hydrological processes and evaluate water resource dynamics within the predefined watershed. The model amalgamates input data, including land use, soil characteristics, and weather information, to simulate surface runoff, evapotranspiration, groundwater flow, and additional hydrological components. The SWAT run generates output results encompassing streamflow, sediment yield, and nutrient transport, offering insights into the hydrological behavior of the watershed. Users can scrutinize these results to evaluate the impact of land management practices, climate variations, and other factors on water resources. The SWAT run operates iteratively, permitting users to refine model parameters and input data to enhance simulation accuracy.

CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONS

4.1 Hydrological Model Development

The hydrological model was created in Map window using the MS SWAT 2009 tools extension for catchment and river delineation. The basin consists of 14 sub-basins, covering a total area of 1721.92 square meters. Each sub-basin functions as a smaller catchment area within the larger basin. Figure 4.1 below illustrates the boundaries of each sub-basin. In addition, Table 4.1 presents the information about the subbasins.

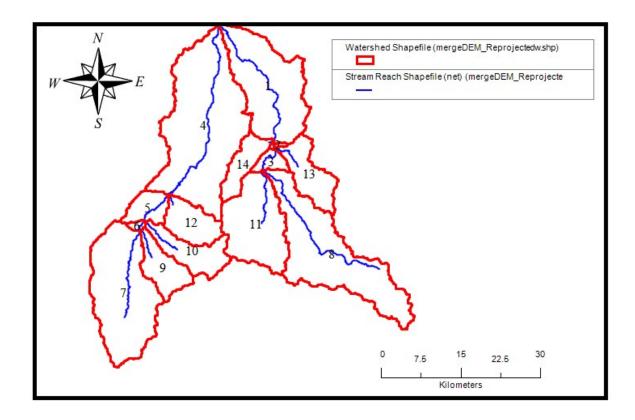


Figure 4.1: Hydrological Model

4.2 Runoff Prediction and Sediment Prediction

4.2.1 Study Area Runoff Prediction

The hydrological model developed for the study area as shown in Figure 4.1 was used to simulate and predict the flow in and flow out of the subbasins. These runoff values are presented in Table 4.1.

Table 4.1: Summary of Flow in and Flow out of the Subbasins

Subbasins	FLOW_INcms	FLOW_OUTcms
1	223.86	164.78
2	2.63	109.48
3	19.58	93.61
4	392.60	178.88
5	40.52	86.79
6	4.94	63.72
7	249.95	50.09
8	280.23	56.13
9	64.60	12.95
10	75.04	15.04
11	170.53	34.18
12	67.79	13.59
13	77.38	15.51
14	52.28	10.47

Table 4.1 summarizes the flow-in and flow-out values for the 14 subbasins, highlighting significant variations in water movement across the catchment. Subbasins 1, 4, 7, and 8 recorded the highest inflows, with subbasin 4 reaching up to 392.60 cms. In contrast, subbasin 2 showed a remarkably low inflow (2.63 cms) but a high outflow (109.48 cms), indicating possible upstream contributions or model discrepancies.

Several subbasins exhibited notable differences between inflow and outflow, suggesting internal storage, infiltration, or water extraction processes. Smaller subbasins (9–14) showed relatively low flows, consistent with their likely limited catchment size or hydrological inputs.

These variations are important for understanding local hydrologic behavior and are essential for water balance analysis and recharge estimation in the region.

4.2.2 Study Area Sediment Prediction

Similarly, the hydrological model developed for the study area as shown in Figure 4.1 was used to simulate and predict the sediment in, sediment out, and sediment concentrations of the subbasins. These sediment values are presented in Table 4.2.

Table 4.2: Summary of Sediment in. Sediment Out, and Sediment Concentration in the Subbasins

Subbasins	SED_INtons	SED_OUTtons	SEDCONCmg_kg
1	2697453.74	2312698.60	7080.74
2	1682327.34	1673002.63	9548.95
3	1497807.03	1442632.43	9751.91
4	3066514.45	2426235.75	6259.84
5	1551948.58	1480801.35	9326.02
6	1076378.85	1060726.62	10868.35

7	824505.04	824108.18	12511.15
8	725316.06	724080.71	11316.05
9	238441.88	238423.87	14382.32
10	350899.0	350854.2	19018.7
11	723114.1	722998.9	17102.2
12	303016.0	303013.8	14430.2
13	233228.2	233199.4	13862.8
14	140895.1	140892.4	12179.5

Table 4.2 provides an overview of sediment inflow, outflow (in tons), and sediment concentration (in mg/kg) across the 14 subbasins. The data reveals considerable variation in sediment transport and concentration, influenced by subbasin characteristics such as slope, land use, and flow intensity.

Subbasins 1, 2, 3, and 4 recorded the highest sediment inflow and outflow, with subbasin 4 receiving the highest sediment input (over 3 million tons), but with a relatively lower sediment concentration (6259.84 mg/kg), possibly due to dilution from high water flow. In contrast, smaller subbasins like 9, 10, and 11 exhibited the highest sediment concentrations, peaking at 19,018.7 mg kg in subbasin 10, indicating intense erosion or limited flow volume leading to higher sediment loading.

Overall, the sediment transport patterns suggest active erosion in several areas and varying capacities of subbasins to retain or pass sediments. These results are crucial for identifying erosion-prone zones and developing targeted soil conservation and watershed management strategies.

4.3 Spatial Analysis of Runoff and Sediment Yield

4.3.1 Spatial Variation Analysis

The spatial variation analysis was performed using mapwindow and the resulting maps were developed as presented in Figures 4.2 to 4.6 for flowIN, flowOUT, sedimentIN, sedimentOUT, and sediment CONC respectively.



Figure 4.1: FlowIN Spatial Variation Map

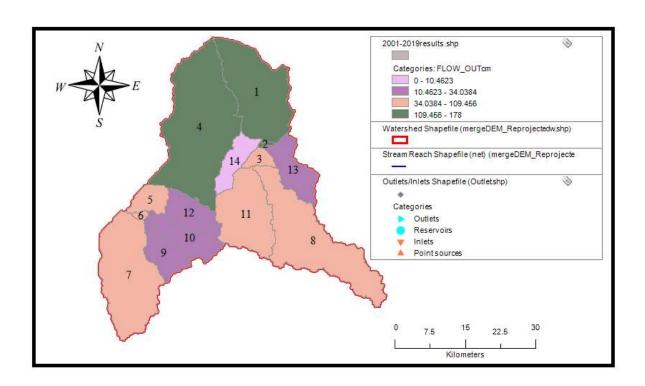


Figure 4.2: FlowOUT Spatial Variation Map

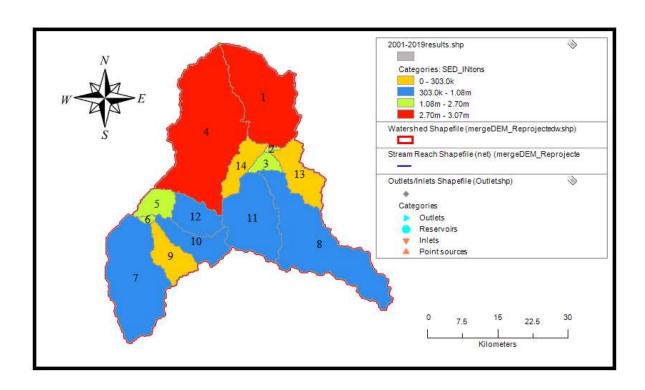


Figure 4.3: SedimentIN Spatial Variation Map

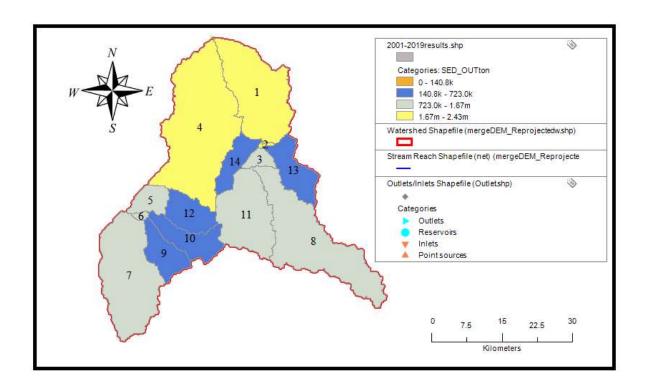


Figure 4.4: SedimentOUT Spatial Variation Map

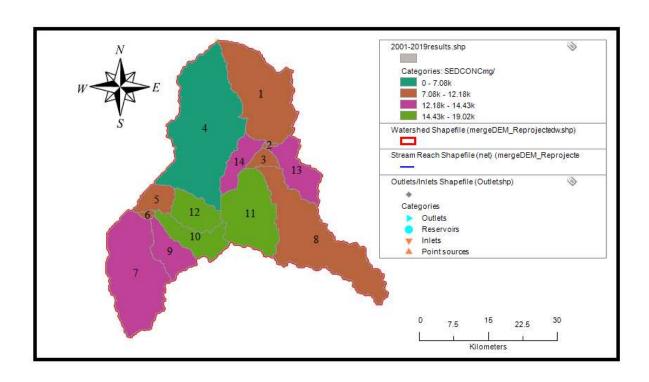


Figure 4.5: SedimentCONC Spatial Variation Map

CHAPTER FIVE

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

Based on the result of the research work, it was concluded that:

- i. The hydrological model developed for the Oyun River using the SWAT tool has proven effective in predicting runoff and sediment loadings throughout the watershed.
- ii. The flow analysis reveals significant spatial variation across the subbasins, with subbasins 1, 4, 7, and 8 contributing the highest inflows. In several cases, such as subbasin 2, low inflows paired with high outflows suggest additional inputs from upstream or lateral sources. Discrepancies between flow-in and flow-out in many subbasins indicate potential internal storage, groundwater recharge, or human-induced withdrawals.
- iii. Sediment analysis shows that larger subbasins carry higher sediment loads due to greater catchment size and flow, while smaller subbasins like 10 and 11 exhibit the highest sediment concentrations, indicating localized erosion. This variation highlights both widespread sediment transport and specific erosion-

prone areas, underlining the need for targeted soil conservation and watershed protection measures.

iv. The spatial analysis identified key sub-basins, particularly sub-basin 4, as areas with the highest risk of sediment accumulation.

5.2 **RECOMMENDATIONS**

The following are the recommendations based on the outcome of this study:

- Implement improved waste management and discharge of organic waste into the river. This should include the installation of proper waste treatment facilities and regular maintenance.
- ii. Involve the local community and stakeholders in conservation efforts by raising awareness about the impact of abattoir activities on water quality, which could encourage better waste disposal practices.
- iii. Establish an ongoing water quality monitoring program that focuses on sediment and nitrate levels in the river. This will help detect any sudden changes in loadings and enable timely interventions.

iv. Further research can be done to explore the effects of different land use scenarios and climate change projections on sediment and nitrate loadings in the river.

REFERENCE

Abdelwahab, Ossama M.M., et al. "Runoff and Sediment Yield Modeling in a Medium-Size Mediterranean Watershed." Water Resources Management, vol. 32, no. 11, 2018, pp. 3679-3691.

Adeogun, Adeniyi Ganiyu, et al. "Simulation of Sediment Yield at the Upstream Watershed of Jebba Lake in Nigeria Using SWAT Model." International Journal of River Basin Management, vol. 16, no. 1, 2018, pp. 1-12.

Ahmadia, H., et al. "Runoff and Sediment Yield Modeling Using WEPP in a Semi-Arid Environment (Case Study: Orazan Watershed)." Soil & Tillage Research, vol. 180, 2018, pp. 1-10.

Chen, P., et al. "Assessment of Soil Loss from Land Use/Land Cover Change and Disasters in the Longmen Shan Mountains, China." Natural Hazards and Earth System Sciences, vol. 18, no. 10, 2018, pp. 2791-2805.

Chandra, Prabhat, et al. "Prediction of Sediment Erosion Pattern in Upper Tapi Basin, India." International Soil and Water Conservation Research, vol. 7, no. 1, 2019, pp. 74-82.

Dar, Sarvat Gull, and Ayaz Mehmood Dar. "Modeling Runoff and Sediment Yield in Highly Gullied Regions of Kashmir Using SWAT Model: A Case Study of Lolab Watershed." Environmental Monitoring and Assessment, vol. 190, no. 12, 2018, pp. 1-13. Debela, Seifu Kebede, and Fekadu Fufa Feyessa. "Rainfall-Runoff Modeling and Its Prioritization at Sub-Watershed Level Using SWAT Model: A Case of Finca'aa, Oromia, Western Ethiopia." Environmental Monitoring and Assessment, vol. 190, no. 2, 2018, pp. 1-14.

De Figueiredo, Eduardo E., and J.C. Bathurst. "Runoff and Sediment Yield Predictions in a Semiarid Region of Brazil Using SHETRAN." Hydrological Sciences Journal, vol. 63, no. 3, 2018, pp. 1-12.

Duan, Yanxin. "A Spatial Decision Support System for Economic Analysis of Sediment Control on Rangeland Watersheds." Journal of Environmental Management, vol. 206, 2018, pp. 912-921.

Fazli, Somayeh, and Hamzeh Noor. "Storm-Wise Sediment Yield Prediction Using Hillslope Erosion Model in Semi-Arid Abundant Lands." Geoderma, vol. 332, 2018, pp. 1-15.

Fenjiro, Imad, et al. "Assessment of Soil Erosion by RUSLE Model Using Remote Sensing and GIS: A Case Study of Ziz Upper Basin Southeast Morocco." Environmental Earth Sciences, vol. 77, no. 7, 2018, pp. 1-12.

Ganiyu, H.O., et al. "Sustainable Management of Runoff and Sediment Yield in a Rapidly Urbanizing Residential Area: A Case Study of Malete, Kwara State, Nigeria." Journal of Water Resource and Protection, vol. 11, no. 7, 2019, pp. 741-752.

Jimeno-Sáez, Patricia, et al. "A Comparison of Performance of SWAT and Machine Learning Models for Predicting Sediment Load in a Forested Basin, Northern Spain." Ecological Engineering, vol. 138, 2019, pp. 21-30.

Kalin, Latif, and Mohammed M. Hantush. "Evaluation of Sediment Transport Models and Comparative Application of Two Watershed Models." Environmental Modelling & Software, vol. 79, 2016, pp. 1-21.

Khanchoula, Kamel, et al. "Assessment of Sediment Yield Using SWAT Model: Case Study of Kebir Watershed, Northeast of Algeria." Environmental Earth Sciences, vol. 76, no. 24, 2017, pp. 1-12.

Kiros, Gebremedhin, et al. "Performance Evaluation of SWAT Model for Land Use and Land Cover Changes in Semi-Arid Climatic Conditions: A Review." Environmental Monitoring and Assessment, vol. 191, no. 2, 2019, pp. 1-10.

Li, Pengfei, et al. "Comparison of Soil Erosion Models Used to Study the Chinese Loess Plateau." Environmental Earth Sciences, vol. 77, no. 5, 2018, pp. 1-13.

Mohammad, M.E. "Application of SWAT Model to Estimate the Annual Runoff and Sediment of Duhok Reservoir Watershed." Arabian Journal of Geosciences, vol. 12, no. 9, 2019, pp. 1-10.

Olaniyan, O. S., et al. "Estimation of Runoff from River Asa Watershed Using SCS Curve Number and Geographic Information System (GIS)." Journal of Water Resources and Ocean Science, vol. 6, no. 2, 2017, pp. 16-24.

Otieno, Hesbon, and Japheth Ogalo Onyando. "Coupling Agricultural Non-Point Source (AgNPS) Model and Geographic Information System (GIS) Tools to Predict Peak Runoff and Sediment Generation in the Upper River Njoro Catchment in Kenya." Environmental Modelling & Software, vol. 105, 2018, pp. 1-10.

Phomcha, Puwadon, et al. "Predicting Sediment Discharge in an Agricultural Watershed: A Case Study of the Lam Sonthi Watershed, Thailand." Science of the Total Environment, vol. 657, 2019, pp. 587-600.

Rawat, Pradeep, et al. "Geospatial Analysis of Soil Erosion and Associated Geomorphic Hazards to Avert Increasing Disaster Risk in Environmentally Stressed Eastern Himalaya Region." Geocarto International, vol. 34, no. 5, 2019, pp. 517-535.

Senanayake, Sumudu, et al. "Assessing Soil Erosion Hazards Using Land-Use Change and Landslide Frequency Ratio Method: A Case Study of Sabaragamuwa Province, Sri Lanka." Sustainability, vol. 10, no. 10, 2018, pp. 3509.

Singh, Vishal, et al. "Response of Hydrological Factors and Relationships between Runoff and Sediment Yield in the Sub Basin of Satluj River, Western Himalaya, India." Journal of Hydrology: Regional Studies, vol. 15, 2018, pp. 33-47.

Tamanna, Marzia, et al. "Evaluation of AnnAGNPS Model for Runoff Simulation on Watersheds from Glaciated Landscape of USA Midwest and Northeast." Environmental Modeling & Assessment, vol. 23, no. 2, 2018, pp. 161-177.

Walling, D. E., and B. W. Webb. "Erosion and Sediment Yield: A Global Overview." Progress in Physical Geography, vol. 36, no. 3, 2018, pp. 1-21.

Wang, Chunying. "Using SWAT Model to Predict Water Flow, Sediment and Nutrients Loads in Shibetsu River Watershed, Eastern Hokkaido, Japan." Water, vol. 11, no. 9, 2019, pp. 1933.

Yahaya, Olotu, et al. "Simulation of Runoff and Sediment Load for Reservoir Sedimentation of River Ole Dam Using SWAT and WEPP Models." Journal of Hydrology, vol. 573, 2018, pp. 1-20.

Yin, Shuiqing, et al. "Regional Soil Erosion Assessment Based on Sample Survey and Geostatistics." Soil & Tillage Research, vol. 179, 2018, pp. 1-12.

Yüksel, Alaaddin, et al. "Using the WEPP Model to Predict Sediment Yield in a Sample Watershed in Kahramanmaras Region." Environmental Earth Sciences, vol. 75, no. 3, 2016, pp. 1-13.

Zalaki-Badil, Nasrin, et al. "Using SWAT Model to Determine Runoff, Sediment Yield in Maroon-Dam Catchment." Water Resources Management, vol. 32, no. 12, 2018, pp. 4091-4103.

Zema, Demetrio Antonio, et al. "Prediction of Surface Runoff and Soil Erosion at Watershed Scale: Analysis of the AnnAGNPS Model in Different Environmental Conditions." Land Degradation & Development, vol. 28, no. 3, 2017, pp. 1110-1125.