

AS-BUILTSURVEYOFKWARASTATEPOLYTECHNIC, (ACASESTUDYOFKWARASTATEPOLYTECHNICMINICAMPUS) OFFGENERALHOSPITALTOSAWMILLGARAGEROAD,ILORINWESTLOCALGOV ERNMENTAREA,KWARASTATE.

PRESENTEDBY

OLAYINKAMUJEEBOLANREWAJU MATRICNUMBER:ND/23/SGI/PT/0004

TO

THE DEPARTMENT OF SURVEY AND GEOINFORMATIC, INSTITUTE OF ENVIROMENTAL STUDIES, KWARA STATE POLYTECHNIC, ILORIN.

INPARTIAL FULFILMENT OF THE REQUIREMENTS FOR AWARD OF NATIONAL DIPLOMA IN SURVEYING AND GEOINFORMATICS.

JUNE,2025.

CERTIFICATE

I Olayinka Mujeeb Olanrewaju, with the Matriculation number ND/23/SGI/PT/0004 here by

certify that all the information given in this project work was carried out in accordance with the

survey Laws, Regulations and departmental instructions. Submitted to the Department of

Surveying and Geoinformatics, Institute of Environmental Sciences, Kwara State Polytechnic,

Ilorin, Kwara State. Inpartial fulfilment of the requirements for award of National Diploma in

Surveying and Geoinformatics.

Candidate's Name: Olayinka Mujeeb Olanrewaju

Matric No:

ND/23/SGI/PT/0004

Signature.....and

Date:.....

34

CERTIFICATION

CERTIFICATION This project titled "As-built Survey of kwara state polytechnic mini campus, off General Hospital – Sawmill road, Ilorin west local government area, Kwara state." by **Olayinka Mujeeb Olanrewaju,** with the **Matriculation number ND/23/SGI/PT/0004** meets the regulations governing the award of National Diploma (ND) of Kwara State Polytechnic, Ilorin and it is approved for its contribution to scientific knowledge and literary presentation.

Surv. Babatunde kabir (Project Supervisor)	Date	and	Sign
Surv. R. S. Awoleye Project Coordinator	Sign		Date
Surv. I. I. Abimbola Head of the Department	 Sign	and	Date
External Examiner	 Sign	and	 Date

DEDICATION

This project work is dedicated to family of Mr. And Mrs. Olayinka

ACKNOWLEDGEMENT

I would like to express my profound gratitude to Almighty Allah for granting me the strength, wisdom, and health to successfully complete this project. My sincere appreciation goes to my supervisor, Surv. Babatunde Kabir & Surv. Abimbola Isau for their continuous guidance, support, and encouragement throughout the course of this survey work.

I am also grateful to the management and lecturers of the Department of Surveying and Geoinformatics, Kwara State Polytechnic, for their valuable contributions, knowledge, and mentorship during my academic journey.

Special thanks to my group members: Bello Muhammad Abdullateef, Wasiu Abdulganiyu Bayonle, Sakariyahu Abdulganiyu, Ibrahim Aishat Khadijat, Yahya Ridwan, Betiku Funmilola Oyinkansola, and Ilori Waris Opeyemi for their teamwork, cooperation, and commitment throughout the field and office phases of the project.

Finally, I appreciate my family and friends for their unwavering support, encouragement, and prayers.

ABSTRACT

This project report on As-built survey of Kwara Polytechnic, Ilorin mini campus, the project was aimed at producing an As-built survey plan of the polytechnic, this aim and the objectives were achieved through the following scopes, recce survey, project planning, data acquisition, data processing and report writing. The methodology employed includes preliminary reconnaissance, checking of control points using Total station, data collection with a Total Station, and data processing was done using autoCAD2007 and the information presentation in both hard and soft copies. The acquired data were processed and analyzed to generate an as-built plan that aligns with planning standards and legal requirements for building and academic construction standard.

TABLE OF CONTENTS

CHAPTER ONE

- 1.0 Introduction
- 1.1. Statement of the problem
- 1.2. Aim of the project
- 1.3. Objectives of the project
- 1.4. Scopes of the project
- 1.5. Specifications of the project
- 1.6. Project location area
- 1.7. Personnel involve

CHAPTER TWO

2.0. Literature review

CHAPTER THREE

- **3.0** Methodology
- 3.1 Reconnaissance
- 3.1.1 Office Planning
- 3.1.2 Field Reconnaissance
- 3.2 Instrument Selection
- 3.3 Instrument Test
- 3.4 Monumentation
- 3.5 Control Check
- 3.6 Data Acquisition
- 3.6.1 Detailing Survey

CHAPTER FOUR

- 4.0 Data Processing
- 4.1 Data Editing
- 4.2 Data Processing Using Auto cad
- 4.3 Data Extraction
- 4.4 Back Computation
- 4.5 Area Computation
- 4.6 Plan Production

CHAPTER FIVE

- **5.0** Summary, Problems Encountered, Conclusion, Recommendation
- 5.1 Summary
- 5.2 Problem Encountered
- 5.3 Recommendation
- 5.4 Conclusion

CHAPTER ONE

1.0 INTRODUCTION

An As-Built Survey is a crucial part of the construction and engineering process, aimed at documenting the exact dimensions, locations, and specifications of a structure or project after its completion. Unlike design or construction drawings, which represent planned features, an as-built survey reflects the actual state of the completed work. These surveys provide a highly accurate representation of all elements that have been constructed, including deviations or modifications made during the building process.

As-built surveys serve multiple purposes across various industries, including architecture, civil engineering, construction management, and facility maintenance. They are typically carried out after construction or installation is completed, but may also be performed periodically during different stages of a project to verify progress and ensure consistency with design specifications. The surveys record precise locations of walls, doors, windows, columns, utilities, and other structural or infrastructural elements.

The importance of as-built surveys has grown significantly with the advancement of technologies such as total stations, 3D laser scanning, drones, and building information modeling (BIM). These tools enhance the accuracy and efficiency of data collection and allow for the creation of detailed digital models of physical structures. The output from as-built surveys is critical for project close-out, renovation planning, asset management, compliance verification, and dispute resolution.

In many construction projects, discrepancies often arise between the original design and the actual construction. This can lead to future design challenges, legal issues, or costly alterations. Lack of accurate and up-to-date records of existing conditions can also hinder maintenance, expansion, ordemolition works. Therefore, there is a need for a reliable method to capture and document existing structures precisely as they are built, especially for academic institutions like the project area.

Overall, as-built surveys bridge the gap between design and reality, providing essential documentation that reflects the true built environment. They play a vital role in quality assurance, ensuring that construction work aligns with intended plans and meets regulatory and client requirements.

1.1 STATEMENT OF THE PROBLEM

In many construction projects, discrepancies often arise between the original design and the actual construction. This can lead to future design challenges, legal issues, or costly alterations. Lack of accurate and up-to-date records of existing conditions can also hinder maintenance, expansion, ordermolition works. Therefore, there is a need for a reliable method to capture and document existing structures precisely as they are built, especially for academic institutions like the project area.

1.2 AIM OF THE PROJECT

The aim of this project is to conduct an accurate as-built survey of an existing structure or infrastructure to provide detailed, verifiable documentation of its actual conditions upon completion, specifically for the project area.

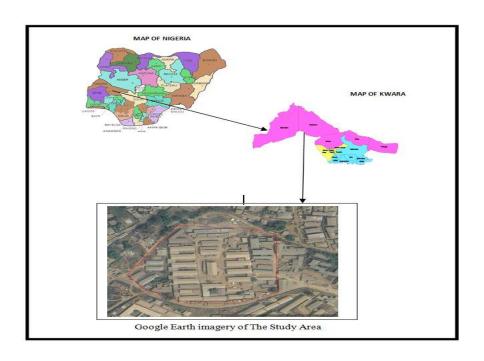
1.3 OBJECTIVES OF THE PROJECT

- i. To identify and record deviations from original design plans.
- ii. To produce precise drawings that represents the existing physical state of the project.
- iii. To produce a record surveying plan of the under-construction structure using the total station.
- iv. To enhance understanding and application of geospatial techniques in post-construction documentation.

1.4 SCOPES OF THE PROJECT

This project focuses on conducting an as-built survey for a selected site, including the collection of field data, data processing, and generation of final as-built drawings. It covers planimetric and elevation features but excludes sub-surface or utility surveys Successful execution of this project involved the following scopes:

- i. Project planning.
- ii. Field reconnaissance.
- iii. Data acquisition.
- iv. Data processing.
- v. Information presentation.
- vi. Technical report writing


1.5 PROJECT SPECIFICATION

The specifications on this project involve the rules and regulations guiding the practice and processes of surveying, which are:

- i. Connection of the survey to national framework (control pillars).
- ii. A close traverse must be laid out for the perimeter survey to ensure checking on the final survey work.
- iii. Provision of the back computation sheet to show the list of the coordinates used for the perimeter survey.
- iv. Linear accuracy of the survey work must be done accurately.
- v. The plan to be produced must be a signed using standard as-built plan scales.

1.6 PROJECT LOCATION DESCRIPTION

The project site is located along Kwara state polytechnic Mini-Campus, inside university of Ilorin Mini-Campus, Off General Gari Alimi road, Ilorin-west local Government Area of Kwara State. Approximately the site is located on latitude 8°28'53.20"N; longitude 4°31'37.75"E and 8°28'55.41"N; 4°31'30.28"E and the imagery below show the project area.

1.7 PERSONNEL INVOLVED

The following are the members of the group that was involved in the as built survey project work, they are;

S/N	Names	Matric No	Role
1.	Solayinka Mujeeb Olanrewaju	ND/23/SGI/PT/0004	Author
2.	Wasiu Abdulganiyu Bayonle	ND/23/SGI/PT/0001	Member
3.	Sakariyahu Abdulganiyu	ND/23/SGI/PT/0003	Member
4.	Bello Muhammad Abdullateef	ND/23/SGI/PT/0002	Member
5.	Ibrahim Aishat Khadijat	ND/23/SGI/PT/0007	Member
6.	Yahya Ridwan	ND/23/SGI/PT/0006	Member
7.	Betiku Funmilola Oyinkannsola	ND/23/SGI/PT/0005	Member
8.	Ilori Waris Opeyemi	ND/22/SGI/PT/012	Member

CHAPTER TWO

2.0 LITERATURE REVIEW

As-Built Survey, a Check for Compliance of Buildings to Their Design Plan, and a Process to Update Plans. This emphasizes the importance of As-built surveys in verifying whether completed buildings align with their original design plans. With the rapid infrastructural development in Nigeria, and particularly in educational institutions like the Federal Polytechnic Ilaro, discrepancies between building plans and actual constructions have become more evident. As-built surveys help to document these differences, ensure compliance, and support future updates or renovations. The introduction also underlines the role of Geographic Information Systems (GIS), AutoCAD, and data collection in maintaining up-to-date and accurate building records.

Study Area the research was conducted at Federal Polytechnic, Ilaro in Ogun State, Nigeria. The institution is located in Yewa South Local Government and has seen rapid growth since its establishment in1979. The increase in student population and departmental expansion highlights the need for updated building documentation and planning.

Methodology used was process was structured into three main stages:

- i. Planning: Involved both office and field planning, including reconnaissance, instrument selection, and work path definition.
- ii. Data Acquisition: Geometric data were gathered using traversing and detailing techniques.

iii. Data Processing: Data from AutoCAD 2018 were exported to ArcGIS 10.6 to create digitized overlays and spatial databases.

Sub-steps included:

- i. Traversing: Measurement of distances and angles to determine boundary points.
- ii. Detailing: Capturing physical features such as roads, buildings, poles, and soakaways.
- iii. Overlay of Plan: Comparing existing plans from physical archives with newly observed data.

Results and Analysis Using ArcGIS 10.6, overlays of the designed vs. actual buildings were analyzed. Major findings include:

- Misalignment between building plans and existing structures.
- Presence of unrecorded features such as walkways, soakaways, pipes, and extensions (e.g.,around Auditorium 1 and the Entrepreneurship Development Building).
- Some structures were not included in the design archives, necessitating updates for planning and maintenance purposes.

Conclusion, As-built surveys are vital for ensuring that buildings comply with their initial design and for maintaining up-to-date spatial information. The study confirmed variations in building layouts and identified new constructions not reflected in original plans. The integration of GIS tools and consistent surveying practices is crucial for infrastructure monitoring and spatial decision-making.

Recommendations; Adequate planning and design from the outset to avoid discrepancies. Proper documentation and updates following any building modifications or

extensions. Regular inspection and re-surveying to maintain alignment between onground realities and archived plans.

emphasizes the necessity of surveyors in construction projects, especially for preparing construction designs, conducting geodetic inventories, and verifying spatial compliance in countries like Poland and Turkey. It discusses the legal framework and responsibilities of surveyors in managing construction data, updating spatial databases, and ensuring project compliance. It also touches on reforms in Ukraine's construction regulations and the importance of geomatics in earthquake-prone zones like Turkey.

Methods as-built geodetic inventory involves notifying contractors in advance. Geodeticworks are regulated, and tasks include field interviews, evaluation of control networks, and situational and height measurements. Measurements are classified as current (e.g., for cables or underground utilities) and final (post-construction). Modern techniques like RTK (Real-Time Kinematic) positioning are favored for their speed and independence from existing control points. RTK is compared to tacheometry in a table that shows itoffers high horizontal and vertical accuracy.

The study presents an inventory of a single-family house in Rogoźno, Lubelskie Voivodeship, Poland. The building has utilities like water, sewage, and electricity. Itincludes visualization (3D model) of the future structure, which has one story, anattic, and annexes like a veranda and terrace. The documentation verifies thealignment of constructed elements with development plans and regulatory compliance.

Study Area The plot is 0.2000 hectares in size, flat, and rectangular with no trees. It is located in Leczyński district and sits 172 m above sea level. Utilities are available,

and access is via a hardened road. The location data and spatial layout were integral to inventory accuracy.

In Conclusions, The as-built geodetic inventory is essential for finalizing construction projects. It validates regulatory and spatial compliance and ensures proper documentation of utilities and structures. The study confirmed no issues during the process. The use of RTK improved efficiency, although vertical accuracy remained a concern. Spatial databases were updated, and a final map of the building inventory was created and submitted to the geodetic documentation center, completing the project with a positive verification result.

The importance of accurate as-built documentation for infrastructure facilities. Traditional methods using total stations or photogrammetry are often limited by visibility and accuracy constraints, especially in underground environments like tunnels. Laser scanning offers a modern solution, capturing millions of data points to create detailed 3D models and panoramic images. This study demonstrates how combining laser scanning with web mapping services can improve documentation and visualization of an urban tunnel.

Method Used and materials used are Laser Scanning Technology, Utilized phase-based laser scanners for high-speed and high-resolution data capture. Scanner placed at regular intervals (every 7 minutes of scanning time, <20m apart) to ensure complete coverage. Survey Setup: Pre-scanning involved choosing scanner positions to avoid traffic, noise, and obstructions. Used geodetic control networks and targets (spherical and planar) to ensure accuracy in scan registration. Point Cloud Processing, Registered

multiple scans into a single coordinate system. Created 3D mesh models and panoramic point cloud pictures. Web Mapping (GRIDD & Truview), Mapped panoramic images to Google Maps using Truview2Map. Each scan's data linked to geographic location for easy web access and sharing. And the Study Area was CTA Red Line tunnel in Chicago, IL, was selected., Spanned approximately 4 miles from 18th St. to Armitage Station.

Results obtained are Successfully generated panoramic point cloud images and precise 3D models of the tunnel. Integrated data was geo-referenced and linked to Google Maps. Enhanced visualization and ease of access to tunnel documentation via web-based tools. Enabled quick decision-making and efficient project communication among stakeholders. In Conclusion, The combined method of 3D laser scanning and web mapping significantly improved the documentation and visualization of the tunnel. The approach allowed for faster, safer, and more accurate as-built data collection and sharing. This method is effective for future infrastructure surveying and maintenance, especially in complex underground environments.

The study highlights how Unmanned Aerial Vehicles (UAVs) can enhance the efficiency of as-built surveys in construction and geomatics. Traditional methods using total stations are time-consuming and labor-intensive. UAVs offer a faster, cost-effective alternative with high accuracy due to advancements in camera and GPS technologies.

The methodology includes; Site Preparation & Training: Reviewed the UTHM Pagoh Campus layout and conducted UAV training. Data Collection: UAV (DJI Phantom 3 Advanced) used to capture aerial photos. Image Processing: Software like Pix4Dmapper and Global Mapper were used to process photos into orthomosaic images and 3D point

clouds. Analysis: Data were compared to proposed site plans using AutoCAD for accuracy validation. The research was conducted at UTHM Pagoh Campus, focusing on capturing and analyzing images of the area between Share Facilities and the main gate. The UAV flew at an altitude of 100mcapturing 329 images with 12MP resolution, covering 0.489 km².

Obtained results are: High-resolution orthomosaic images and 3D models were successfully generated. The processed data enabled detailed comparisons with proposed development plans. UAV technology reduced manpower and time while increasing efficiency and accessibility. UAV characteristics: 10-15 min flight duration, max 500m altitude, 12MP camera with 2.7K video.

And final conclusion the UAV-based method proved effective for as-built surveys. It offers multiple benefits such as speed, cost-efficiency, and accuracy. The processed data can support planning, infrastructure monitoring, and updating maps. The study confirmed UAVs as a viable alternative to traditional surveying, especially for modern engineering and construction applications.

CHAPTER THREE

3.0 METHODOLOGY

This aspect refers to a system of methods and principles, rules used in a field of study to achieve the aim and objectives of this project. The modality to successful execute this project was carried out based on the survey rules and regulation, supervisor advice and departmental instructions.

3.1 RECONNAISSANCE

Reconnaissance survey is a preliminary stage for exploratory investigations conducted to gather initial data concern the choice of Site area of Subject before more detailed research or filed work commenced. Reasons for reconnaissance survey of the project area are the following;

- To know the location of the site.
- ii. To determine the preliminary area/perimeter of the land.
- iii. To know the survey method suitable for the field data acquisition and the instrument need for the it.

Reconnaissance in this project involved preliminary investigations to gather information about the survey area before conducting a detailed survey, reconnaissance of this project was carried out in two way namely as follows.

- i. Office planning
- ii. Field Reconnaissance

3.1.1 OFFICE PLANNING

It involved the process adopted in the collection of relevant data and specification about the as-built Surveying with the used of traversing survey method. During the office planning the given coordinate for control point HND2001, TBM0110, and HND2002, was obtained and computed as shown in the table 3.1 below. The choice of equipment to be use for project was obtained from the survey store in the department of surveying and Geoinformatic, Kwara State Polytechnic, Ilorin, and it was handled accordingly to the survey rules and regulations and departmental instruction.

TABLE 3.1 Showing the list of the coordinate of the control pillars used

Stations	Northing (m)	Easting (m)	Remark
HND2001	937892.5580	668076.4680	Given
TBM0110	937900.4120	668069.5750	Given
HND2002	937909.7109	668061.2683	Given

3.1.2 FIELD RECONNAISSANCE

Field recce and site visitation was conducted as preliminary survey for investigation of the basic information about a specified project area, location, or subject in the field. It allows the members of the groups to be familiar with the terrain, boundary lines, selection number of station required, Equipment that will be used for the job, pillars number HND2001, TBM0110, and HND2002 used as a control for the project and so on. The stations points selected was Inter-visible to one another and finally a reconnaissance diagram was produced which was attached to this project

RECCE DIAGRAM

3.2 INSTRUMENT SELECTION

The equipment used for this project was grouped into two categories;

i. Hardware

ii. Software

3.2.1 Hardware used

- i. Total Station with its Accessories (KTS-442L)
- ii. Reflector poles
- iii. Field book
- iv. Writing material (pen)
- v. Survey beacons
- vi. Steel Tape (5m)
- vii. Tripod Stand

3.2.2 **Software used**

Below are the list of the software used during the project processing;

- i. AutoCAD 2007
- ii. Notepad
- iii. Microsoft word
- iv. Microsoft Excel

3.3 INSTRUMENT TEST

The instrument test was carried out before it used for angular observation. The purpose of testing the instrument before used is to know the assurance and maybe other instrument is in good Condition the instrument was set up over station A and it was pointed a Sighted to station B whore a pole Is hold, and the angle was recorded for face left the instrument was turn to farce right on the same point and it was sighted to station B, where a pole is held at the same position and the angle was recorded. The distance between station A and B 1s 10m. The steel tape was hold at 60m an point A and it was

extend to point B. the results for the instrument test was shown i to figure 3.3 below and table 3:2 below.

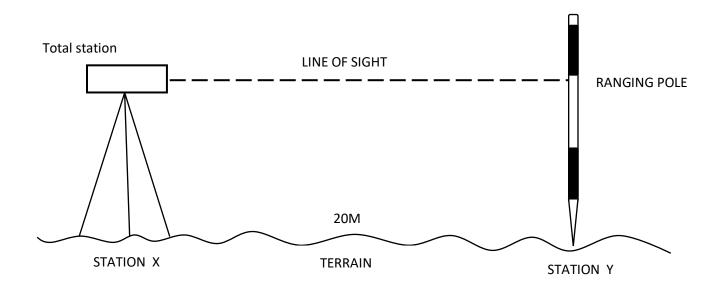


Figure 3.1 showing the instrument set up for collimation test

Table 3.2 showing the test of instrument result

STATION	SIGHT	FACE	HORIZONTAL	DEDUCED
			READING	ANGLE
A	В	L	180° 00' 03"	
	В	R	00°00' 00''	180° 00' 03"

Different in horizontal circle reading: 180° 00' 03''

Horizontal collimation error

= 180° 00' 03''

= 000° 00 03"

Collimation error = $\frac{00^{\circ} 00'03''}{2}$

Horizontal collimation error = $00^{\circ} 00' 01''$

Because the collimation error falls within the allowable 01". The instrument was in good condition.

3.4 MONUMENTATION

This is the process in which the beacon is being buried in to ground. On the project site there are same existing beacons on the boundary lines m, nail with cap (bottle cork) was used as the station pegs.

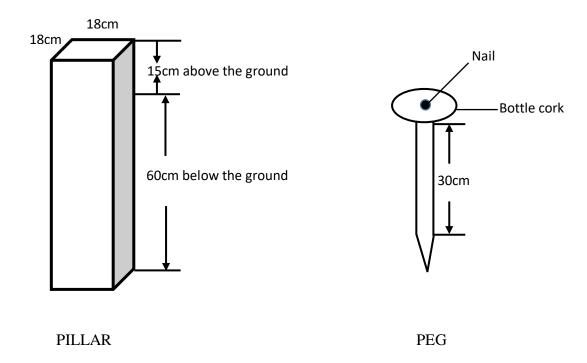


FIGURE 3.4 Diagram and Dimension of Pillars buried

3.5 CONTROL CHECK

The Control check was carried out to know the control point HND2001, TBM0110, and HND2002 are still in their positions. The instrument was set on Control FP01107 and the temporary adjustment was carried out i.e centring, levelling, and focusing. Back site was taken to control HND2001 and it was recorded.

The fore sight was served to PEG1 and it was recorded Steel tape was used to measure the distance between TBM0110 and PEGI and it was recorded. The data observed was computed for given coordinate and Observed Coordinate, as shown in the table 3.2 below.

TABLE 3.2 THE GIVEN COORDINATE OF THE CONTROL POINTS

Stations	Northing (m)	Easting (m)	Remark
HND2001	937892.558	668076.468	Given
TBM0110	937900.412	668069.575	Given
HND2002	937909.711	668061.268	Given

TABLE 3.3 The Backward Computation for the Given Controls pillars

From	Bearing	Distance	ΔN	ΔE	Northing	Easting	To station
station					(m)	(m)	
					937892.558	668076.468	HND2001
HND2001	318° 43' 42''	10.472	7.854	-6.893	937900.412	668069.575	TBM0110
TBM0110	318° 13' 33''	12.469	9.299	-8.307	937909.711	668061.268	HND2002

TBM0110 to HND2002 BEARING = 318° 13' 33'' DISTANCE = 12.469m HND2002 to TBM0110 BEARING = 138° 43' 42'' DISTANCE = 10.472m

TABLE 3.4 Show the Observed Coordinate of the Controls Pillars

Stations	Northing (m)	Easting (m)	Remark
HND2001	937892.550	668076.460	Observed
TBM0110	937900.412	668069.575	Observed
HND2002	937909.715	668061.271	Observed

TABLE 3.5 Show the Backward Computation for the Observed Control Pillars

From	Bearing	Distance	ΔN	ΔE	Northing	Easting	To station
station					(m)	(m)	
					937892.550	668076.460	HND2001
HND2001	318° 43' 25''	10.451	7.862	-6.885	937900.412	668069.575	TBM0110
TBM0110	318° 14' 51''	12.470	9.303	-8.304	937909.715	668061.271	HND2002

TBM0110 to HND2002 BEARING = 318° 13' 51' DISTANCE = 12.470m

HND2002 to TBM0110 BEARING = 138° 43' 25" DISTANCE = 10.451m

Therefore the difference between the given and observer bearing was 00°00′19″ and 00°00′17″ and the difference between the given and the observer linear distance was 0.003m and 0.021m the results obtained fall within the allowable accuracy for both angular and linear observation.

It was concluded the instrument was in good condition and fit to be used for the project.

3.6 DATA AQUISITION

This was carried out on the field using Total station with its accessories (KTS-442L) was used for coordinating the entire site for both the perimeter and details of the site. The Total station was set on the control Pillar TBM0110, and the temporary adjustment was carried out centering, leveling and focusing. The coordinates of the occupied station was input after that the coordinates of the backsight HND2001 was record as well and the observation was done to backsight pillar and the coordinates was take and check against the given. Having check and found accurate then the perimeter survey commenced for the entire project site.

3.6.1 DETAILING SURVEY

The detailing survey was done immediately after completely carried out the perimeter traverse to determine the position of the features on the Site was fixed using radiation survey method. During this several stations was established to pick the coordinates of the details and the coordinates was stored on the total station as its observed. This was later downloaded. The details that was picked during the detailing survey was coded in different ways like Building edges as 'BLD', Electric Poles 'EP', Drainage 'DR', Roads Line 'RD', Spot Height 'SP' and so on.

CHAPTER FOUR

4.0 DATA PROCESSING

This involved several step to ensure accurate and reliable result. It explains the method used in capturing; processing, downloading, and analyzing the data acquired Data reduction in surveying involves various methods to simplify and summarize the collected data for analysis. These are some common methods of data reduction that involves

- Combining multiple values into a single value. The average value is calculated by summing up all the values and dividing by the number of values.
- Least Square Adjustment (LSA) is a method of data reduction that involves minimizing the sum of the squared errors between observed and calculated values.
- Interpolation is a method of data reduction that involves estimating values between observed data points.
- Spatial data reduction refers to the process of simplifying and reducing the complexity of spatial data, such as geographic information system (GIS) data, while preserving its essential characteristics.

4.1 DATA EDITING

- Open excel
- Click on the desire file
- Set to delimited
- Click on next
- Mack space and comma
- Click
- On next

• Then click on finish

4.3 DATA PROCESSING USING AUTOCAD

The plan produced digitally with AutoCAD software. The following are the procedure used:

STEP 1: Open Notepad

Open Notepad on your computer. You can find it in the start menu (Window)

STEP 2: Create a New File

Click on "file" "New" to create a new file

STEP3: Enter Coordinates

Enter your coordinates in the following format:

X. Y. Data

STEP 4: Save the Fil

Click on "File" > "Save as" and choose a location to save your file. "ALADA

Coordinate" txt, and select "All files" as the file type.

Importing the Coordinate File Into 2007 AutoCAD

STEP 1: Double click AutoCAD

Go under format

Click on format after that pick your unit

Drawing unit

Type.... Decimal

Precision... 0.000

Angle type Degree/Min/See

Precision Od00

Clockwise.... ┶

Unit to scale Meters

Direction control North 270d0

Press "OK"

STEP 2: Create a new drawing

Click on "File" > "Name" to create a new drawing

STEP 3: Import the coordinate file

Click on "Tools" > "Reference" > "Import" and select "ALADA coordinate (.txt)" as the file type. Navigate to the location where you saved your coordinate file ("ALADA coordinate .txt") and select it.

STEP 4: Configure Import Setting. In the import select "Point" as the object type and choose the correct coordinate format (eg. X and Y) click "OK" to import the coordinates.

4.4 DATA EXTRACTION

The data recorded in the field book was picked to compute for the bearing and distance. Forward computation and backward computation after all necessary correction have been applied. Correction like slope correction, tension correction and standardization correction.

4.3 BACK COMPUTATION

The result get for forward computation was used for Back computation.

The following program was required for back computation

i. Input N2-N1 to get Δ N

ii. Input E2-E1 to get Δ E

iii.Input $\sqrt{(\Delta N^2 + \Delta E^2)}$ to get distance

iv. Input shift $\tan \frac{\Delta E}{\Delta N}$ to get the corrected bearing when there us more station repeat step $||\cdot||$ and ii.

Table 4.1 Showing Boundary Coordinates

Station	Northing (m)	Easting(m)	Remark
PIL1	937720.924	668157.605	Observed
PIL2	937720.560	668042.167	Observed
PIL3	937748.847	667988.759	Observed
PIL4	937788.194	667965.709	Observed
PIL5	937930.248	668056.923	Observed
PIL6	937924.001	668159.813	Observed

Table 4.1.1 Showing back computation for the boundary coordinate

Station	Bearing	Distance	ΔΝ	ΔΕ	Northing	Easting	Station to
form							
					937720.924	668157.605	PIL 1
PIL1	89° 49' 09''	115.484	0.364	115.438	937720.560	668042.167	PIL 2
PIL 2	117° 54'26''	45.302	-28.287	53.408	937748.847	667988.759	PIL 3
PIL 3	149° 38' 15"	31.887	-39.347	23.05	937788.194	667965.709	PIL 4
PIL 4	180° 35' 31"	108.901	-142.054	-91.214	937930.248	668056.923	PIL 5
PIL 5	253° 31' 46"	102.700	6.247	-102.89	937924.001	668159.813	PIL 6
PIL 6	360° 00' 39"	203.082	203.077	2.208	937720.924	668157.605	PIL 1

4.4 AREA COMPUTATION

TABLE 4.1.2 showing area computation for the boundary coordination using double latitude

ΔΕ	ΔΝ	PRODUCT
115.438	X 0.364	= 42.019432
115.438		
230.876		
53.408		
284.284	X -28.287	=-8041.541508
53.408		
337.692		
23.05		
360.742	X -39.347	=-14194.11547
23.05		
283.792		
-91.214		
292.578	X -142.054	= -41561.87521
-91.214		
201.364		
-102.89		
98.474	X 6.247	= 615.167078
-102.89		
-4.416		
2.208		
-2.208	X 2203.077	= -448.394016
2.208		
0.000		

=42.01943-8041.541508-14194.11547-41561.87521+615.167078-448.394016

= -63588.73969\2

= 31794.36985m²\10,000.

= 3.1794 HECTRES

4.5 PLAN PRODUCTION

All the plan were produces in both soft copies and hard copies, the hard copies were shown on the appendix page attached with the project.

CHAPTER FIVE

5.0 SUMMARY, PROBLEMS ENCOUNTERED, CONCLUSION,

RECOMMENDATION

5.1 **SUMMARY**

In order to determine the shape, size and location of the Kwara state Polytehnic Mini Campus, reconnaissance was carried out which helps in taking further decisions. Beacons were coordinated using total station with the help of existing control points very close to the project site. Data were downloaded and processed using appropriate AutoCAD 2007 software and the final adjusted coordinates of the perimeter were used to plot the boundary and other details. The resulting plan was printed in scale 1: 2,500. A comprehensive Technical report was prepared and printed.

5.2 PROBLEM ENCOUNTERED

- i. Too much of rainfall which does not allowed site
- ii. Unavailable of the group members due to dean's cup football tournament
- iii. While taking observing there are some object obstructing the view when taking the observation e.g electric pole, building, tree etc.

5.3 **RECOMMENDATION**

The department should considered the season and time that the students should be given the terminal project.

5.4 CONCLUSION

At the end the aim and objective of this project was achieved. It was carried out using third order surveying method this project was carried out in accordance with survey rules and regulation and departmental instruction

RAW DATA

Name	Code	E	N	h	PT260	SH	668115.4	937791.5	317.946
PT1	ST17	668069.6	937900.4	324.137	PT261	SH	668118	937790.7	318.041
PT2	CV	668071.1	937900.4	324.553	PT262	SH	668117.7	937795.6	317.967
PT3	CV	668072	937900.3	324.541	PT263	SH	668113.5	937797.2	317.656
PT4	BLD	668072.6	937900.6	324.383	PT264	SH	668110.1	937800.8	317.647
PT5	BLD	668066.5	937905.8	323.724	PT265	SH	668110.4	937806.9	317.571
PT6	SH	668069.7	937897.9	324	PT266	SH	668114.1	937808.4	317.326
PT7	SH	668072.6	937896.1	324.671	PT267	SH	668117.8	937810	317.601
PT8	SH	668072.2	937891.5	324.604	PT268	SH	668117.6	937814.7	317.532
PT9	SH	668076.5	937892.6	324.821	PT269	SH	668113.8	937816	317.212
PT10	SH	668083.2	937892.3	324.831	PT270	SH	668109	937815.1	317.485
PT11	SH	668085.6	937889.4	324.87	PT271	SH	668104.5	937814.4	317.27
PT12	BLD	668085.4	937886.8	324.848	PT272	SH	668104.8	937819.5	317.197
PT13	SH	668088.7	937888.5	324.887	PT273	SH	668109.7	937818.5	317.278
PT14	SH	668090.4	937893.3	324.882	PT274	SH	668113.6	937819	317.192
PT15	SH	668095.3	937895.1	324.957	PT275	SH	668117.7	937821.2	317.334
PT16	SH	668095.6	937891.4	324.958	PT276	SH	668114.1	937823.2	317.152
PT17	BLD	668139.4	937901.3	324.586	PT277	SH	668109	937824.1	317.181
PT18	CV	668139.1	937901.2	316.047	PT278	SH	668104.9	937822.2	317.161
PT19	CV	668139.5	937900.4	316.104	PT279	SH	668105	937825.4	317.107
PT20	CV	668137.3	937899	317.048	PT280	SH	668103.5	937827.1	317.276
PT21	SH	668133.7	937894.7	316.106	PT281	SH	668108.1	937827.2	317.179
PT22	SH	668136.7	937894.8	316.021	PT282	SH	668112	937827.1	317.097
PT23	BLD	668137	937893.5	316.015	PT283	SH	668116.6	937827.5	317.116
PT24	SH	668141.1	937890.4	315.886	PT284	SH	668117.8	937831.4	317.048
PT25	SH	668145.9	937889.2	315.599	PT285	SH	668112.9	937833.2	317.012
PT26	SH	668147.8	937891.6	315.619	PT286	SH	668108.8	937832.7	317.058
PT27	GT	668148.7	937893.4	315.804	PT287	SH	668106.3	937831.7	317.095
PT28	GT	668147.9	937894	315.765	PT288	SH	668120.4	937780	318.343
PT29	BLD	668148.9	937893.2	315.928	PT289	SH	668125.9	937783	318.036
PT30	SH	668148.1	937886.3	315.852	PT290	SH	668122.6	937785.4	318.043
PT31	SH	668144.4	937882.9	315.942	PT291	SH	668120.9	937789.4	318.013
PT32	SH	668140.3	937879.1	316.287	PT292	BLD	668120.6	937791.6	317.908
PT33	SH	668144.4	937877.2	316.236	PT293	SH	668125	937790.3	317.853
PT34	SH	668147.4	937877.9	316.065	PT294	SH	668128.5	937785.7	317.944
PT35	BLD	668149.4	937879.9	315.956	PT295	SH	668133	937781.5	317.952
PT36	BLD	668156.1	937879.6	315.966	PT296	SH	668132.9	937786.5	317.857
PT37	BLD	668156	937874.1	315.966	PT297	SH	668132.2	937790.7	317.807
PT38	EP	668150.9	937875.2	316.093	PT298	SH	668137	937790.8	317.772
PT39	SH	668152	937878.1	315.912	PT299	SH	668139.7	937786.5	317.824

PT40	BLD	668146.3	937874.1	316.297	PT300	SH	668140	937781.4	318.046
PT41	SH	668132	937896.8	316.129	PT301	SH	668144.3	937781.2	318.023
PT42	BLD	668128.4	937894.7	316.378	PT302	SH	668145.5	937786.4	317.727
PT43	SH	668124.8	937894.3	316.451	PT303	SH	668146	937791.2	317.717
PT44	SH	668121.3	937892	316.499	PT304	SH	668149.5	937790.8	317.75
PT45	SH	668118.3	937894.3	316.594	PT305	SH	668149.7	937786.7	317.692
PT46	SH	668115.7	937888.6	316.573	PT306	SH	668148.9	937781.3	317.842
PT47	BLD	668113.6	937886.9	316.529	PT307	BLD	668150.4	937781.4	317.8
PT48	SH	668110.4	937889.4	316.736	PT308	BLD	668150	937791.5	317.803
PT49	SH	668108.3	937891.8	316.596	PT309	SH	668113.7	937768.9	318.789
PT50	SH	668104.4	937892.2	316.593	PT310	SH	668113.6	937766	318.901
PT51	SH	668104.2	937889.1	316.626	PT311	BLD	668112.8	937763.3	319.05
PT52	SH	668117.5	937886.8	316.551	PT312	SH	668117.2	937761.4	318.943
PT53	SH	668119.7	937883.9	316.541	PT313	SH	668117.5	937764.3	318.911
PT54	SH	668117.1	937883.2	316.562	PT314	SH	668122.4	937765.5	318.977
PT55	SH	668114.2	937882.6	316.592	PT315	SH	668124.5	937762.3	318.933
PT56	BLD	668113.5	937874.4	316.659	PT316	SH	668122.4	937758.6	318.969
PT57	SH	668115.5	937874	316.641	PT317	SH	668121.7	937753.2	319.012
PT58	SH	668117.6	937873.9	316.666	PT318	SH	668119.4	937752.3	319.022
PT59	SH	668116.9	937866.3	316.759	PT319	BLD	668113	937752.1	319.283
PT60	SH	668114.9	937865.7	316.81	PT320	BLD	668113.1	937748.7	319.275
PT61	SH	668112.2	937865.8	317.066	PT321	BLD	668113.2	937730.1	319.819
PT62	BLD	668111.7	937870.2	316.664	PT322	BLD	668118.1	937726.7	320.172
PT63	SH	668124	937868.3	316.542	PT323	BLD	668118.2	937750.2	319.117
PT64	BLD	668129.2	937867.4	316.594	PT324	SH	668122.5	937751.6	319.006
PT65	SH	668128.1	937869.8	316.579	PT325	SH	668124.5	937754.3	318.972
PT66	SH	668127.9	937872.5	316.566	PT326	SH	668125.4	937757	318.942
PT67	SH	668125	937873.8	316.569	PT327	SH	668126.4	937759.8	318.902
PT68	SH	668123.6	937877	316.822	PT328	SH	668127.7	937763.6	318.945
PT69	SH	668126	937879.4	316.682	PT329	SH	668129.6	937766.7	319.003
PT70	SH	668121.7	937869.6	316.558	PT330	SH	668132.3	937766.4	319.052
PT71	SH	668121.5	937862	316.817	PT331	SH	668132.9	937763.9	319.098
PT72	SH	668123.1	937858.4	316.857	PT332	SH	668133.1	937760.8	318.995
PT73	SH	668118.9	937856.2	316.91	PT333	SH	668133.8	937757.1	318.991
PT74	BLD	668120.4	937852	316.833	PT334	SH	668134	937753.4	318.981
PT75	SH	668116.8	937852.9	316.833	PT335	SH	668134.5	937750.7	319.07
PT76	CV	668119	937855.1	316.791	PT336	BLD	668137.6	937750.4	319.035
PT77	CV	668118.5	937855.2	316.819	PT337	SH	668138.2	937752.8	319.024
PT78	SH	668111.8	937851.5	317.396	PT338	BLD	668140.6	937755.3	318.91
PT79	SH	668115.7	937850.6	316.866	PT339	SH	668137.7	937757.7	319.018
PT80	SH	668118.3	937849	316.835	PT340	SH	668136	937762	319.013
PT81	SH	668118.1	937843.1	316.939	PT341	SH	668138.3	937764.7	319.044
PT82	SH	668113.8	937842.7	316.91	PT342	BLD	668139.4	937765.7	319.051

PT83	SH	668108.1	937843.3	317.4	PT343	SH	668141.4	937749.2	319.111
PT84	SH	668106.1	937847.2	317.641	PT344	SH	668143.4	937751	319.05
PT85	SH	668102.4	937849.2	317.563	PT345	SH	668144.9	937753.8	318.948
PT86	SH	668101.2	937843.6	317.586	PT346	SH	668147.2	937751.6	318.691
PT87	SH	668099.2	937840.3	317.489	PT347	SH	668146.9	937747.9	319.135
PT88	SH	668098.1	937836.4	317.051	PT348	SH	668144.5	937745.9	319.098
PT89	SH	668094.9	937829.9	317.405	PT349	SH	668143.8	937741.8	319.252
PT90	SH	668099	937830	317.366	PT350	BLD	668137.8	937739.5	319.454
PT91	SH	668102.2	937835.3	317	PT351	SH	668140	937740.1	319.295
PT92	SH	668093	937842.7	317.597	PT352	SH	668141.4	937742	319.263
PT93	SH	668090.5	937849.3	317.02	PT353	SH	668145.1	937740.6	319.475
PT94	SH	668088	937845.4	317.154	PT354	SH	668147.6	937743.1	319.297
PT95	CV	668089.1	937840.1	317.01	PT355	SH	668149.8	937746.8	319.15
PT96	CV	668089.5	937840.1	317.036	PT356	SH	668151.4	937750.4	319.144
PT97	CV	668089.7	937835.1	316.97	PT357	SH	668153.9	937753.9	319.13
PT98	CV	668089.1	937835.1	316.951	PT358	BLD	668156.8	937753.8	319.16
PT99	SH	668087.3	937837.4	317.032	PT359	BLD	668155	937750.1	319.175
PT100	SH	668084.9	937841.3	317.015	PT360	GT	668156.7	937750.4	319.189
PT101	SH	668081.1	937845.6	316.694	PT361	GT	668156.4	937744	319.379
PT102	BLD	668082.4	937849.5	316.774	PT362	BLD	668151.3	937744.1	319.293
PT103	SH	668079.2	937850.8	316.576	PT363	BLD	668157.6	937720.9	319.595
PT104	SH	668076.3	937851.1	316.606	PT364	BLD	668075.3	937717.9	320.555
PT105	SH	668076.4	937857.2	316.522	PT365	BLD	668042.2	937720.6	320.353
PT106	SH	668079.6	937859	316.481	PT366	BLD	668036	937729.4	320.261
PT107	SH	668082.3	937859.3	316.539	PT367	BLD	668035.2	937744.9	319.623
PT108	SH	668081.6	937865.3	316.444	PT368	BLD	668011	937744.6	320.389
PT109	SH	668078.7	937867	316.454	PT369	BLD	668000.4	937749.6	319.55
PT110	SH	668075.8	937866.3	316.351	PT370	BLD	667993.6	937757.8	318.942
PT111	SH	668074	937869.4	316.329	PT371	BLD	667980.6	937772.8	318.59
PT112	SH	668078.7	937870.4	316.547	PT372	BLD	667974.3	937782.4	318.279
PT113	SH	668081.1	937872.7	316.472	PT373	BLD	667968.1	937789.6	318.03
PT114	SH	668081.9	937877.2	316.469	PT374	RD	667966.1	937793.6	317.734
PT115	SH	668079	937877.3	316.472	PT375	CL	667964.4	937795.8	317.839
PT116	SH	668076.3	937876	316.604	PT376	RD	667962.9	937797.2	317.658
PT117	EP	668074.3	937876.1	316.594	PT377	SH	667967.3	937798.1	317.599
PT118	TM	668071.8	937879	316.342	PT378	SH	667972.1	937795.5	317.821
PT119	TM	668076.7	937878.8	316.445	PT379	SH	667976.9	937798.1	317.559
PT120	TM	668077.2	937885.8	316.536	PT380	SH	667975.5	937802	317.229
PT121	SH	668079.9	937885	316.362	PT381	SH	667973.8	937805.3	317.111
PT122	SH	668082.8	937883.4	316.48	PT382	SH	667974.4	937809.3	317.087
PT123	SH	668079.8	937880.6	316.437	PT383	SH	667980.3	937808.6	317.008
PT124	SH	668064.8	937896.9	315.429	PT384	SH	667986.3	937808.3	317.055
PT125	BLD	668064.8	937885.4	315.743	PT385	SH	667989	937806.7	317.471

PT126	SH	668069.7	937888.7	315.93	PT386	SH	667991.4	937808.2	317.321
PT127	SH	668069.8	937882.8	315.817	PT387	BLD	667995.8	937809.1	317.181
PT128	EP	668066.9	937881.4	316.367	PT388	BLD	667996.6	937819.4	317.014
PT129	BLD	668073.2	937873.9	316.28	PT389	BLD	667997.1	937825.8	316.715
PT130	SH	668076.5	937842.5	316.803	PT390	BLD	667997.7	937836.1	316.436
PT131	SH	668080.9	937837.3	316.882	PT391	SH	667999.8	937837.9	316.489
PT132	SH	668076.4	937833.4	317.117	PT392	SH	668004.1	937837	316.697
PT133	SH	668079.1	937829.3	317.088	PT393	SH	668006.3	937835.7	316.836
PT134	SH	668084.6	937829.3	317.095	PT394	SH	668012.2	937839.5	317.101
PT135	SH	668084.6	937825.2	317.166	PT395	BLD	668024	937834.2	316.943
PT136	SH	668080.9	937824.4	317.192	PT396	EP	668028.4	937833.8	316.701
PT137	EP	668075.2	937830.8	317.409	PT397	SH	668027.3	937830.5	316.834
PT138	SH	668076.5	937824.8	317.309	PT398	SH	668024.8	937827.5	316.95
PT139	SH	668080.1	937820.9	317.285	PT399	SH	668027.4	937825.1	316.977
PT140	SH	668083.9	937818.9	317.208	PT400	SH	668025.7	937818	317.088
PT141	SH	668084.3	937814.6	317.38	PT401	BLD	668022.6	937817.1	317.238
PT142	SH	668080.3	937812.9	317.483	PT402	SH	668025.6	937813.3	317.258
PT143	SH	668077	937811.8	317.722	PT403	SH	668030.1	937809.1	317.516
PT144	EP	668075.5	937812.1	317.622	PT404	BLD	668031.1	937802.8	317.66
PT145	CV	668075.9	937810.5	317.869	PT405	SH	668027.5	937801.2	317.556
PT146	CV	668076.6	937810.4	317.877	PT406	SH	668031.4	937799.3	317.671
PT147	CV	668076.1	937808	317.884	PT407	BLD	668035	937801.7	318.075
PT148	CV	668076.5	937808	317.896	PT408	SH	668032	937800	317.586
PT149	BLD	668073.4	937815.4	317.468	PT409	SH	668031.4	937796	317.74
PT150	BLD	668073.5	937803.4	317.824	PT410	SH	668033.4	937793.9	317.725
PT151	SH	668077.3	937804.7	317.737	PT411	BLD	668035.2	937792.8	317.863
PT152	SH	668080.4	937805.5	317.546	PT412	BLD	668029.7	937792.2	318.048
PT153	SH	668083.8	937807.7	317.514	PT413	BLD	668029.5	937779.7	318.482
PT154	SH	668084	937803.1	317.576	PT414	BLD	668035.6	937839.2	316.76
PT155	SH	668080.5	937801.9	317.645	PT415	BLD	668030	937849.5	316.014
PT156	SH	668076.8	937799.4	318.005	PT416	BLD	668014.7	937849.8	315.771
PT157	SH	668080.5	937797	317.729	PT417	RD	668001.4	937850	315.553
PT158	SH	668084.2	937798.5	317.584	PT418	RD	667996.5	937852.3	315.646
PT159	SH	668086.6	937795.5	317.625	PT419	BLD	668015.4	937870.2	315.216
PT160	SH	668088.9	937794.7	317.784	PT420	RD	668022.4	937889	314.617
PT161	SH	668087.8	937791.7	318.04	PT421	RD	668020.3	937890.7	314.467
PT162	BLD	668090.2	937790.5	318.057	PT422	BLD	668035.6	937896.8	314.523
PT163	SH	668086	937790	318.019	PT423	CV	668032.5	937898.1	314.441
PT164	SH	668079.9	937790.6	317.829	PT424	CV	668032.1	937898.6	314.354
PT165	SH	668076.8	937791.1	317.997	PT425	EP	668026.8	937902.6	314.367
PT166	EP	668075.9	937791.5	318.028	PT426	EP	668042.4	937923.4	313.423
PT167	SH	668081.3	937788.3	317.911	PT427	EP	668045.7	937913.1	313.825
PT168	SH	668086.2	937787	318.037	PT428	CV	668045.7	937915.3	314.041

PT169	SH	668088.3	937782.1	318.256	PT429	CV	668045.2	937915.7	314.017
PT170	SH	668083.1	937782.1	318.113	PT430	RD	668050.4	937924.9	313.193
PT171	SH	668077.2	937783.1	318.448	PT431	RD	668048	937928.1	313.163
PT172	SH	668077.1	937779.4	318.482	PT432	CL	668049.6	937927.2	313.142
PT173	SH	668080.8	937779.2	318.382	PT433	BLD	668057.8	937924.9	313.443
PT174	SH	668086.1	937777	318.527	PT434	BLD	668139.5	937920.4	313.76
PT175	SH	668088.4	937774.7	318.351	PT435	BD	668156.3	937920.7	312.957
PT176	CV	668076.7	937775.7	318.733	PT436	BLD	668156.4	937893.6	315.143
PT177	CV	668076.4	937775.7	318.755	PT437	BLD	668120.5	937803.6	317.77
PT178	SH	668075.6	937773.1	318.598	PT438	SH	668121.8	937806.3	317.702
PT179	BLD	668073.5	937768.6	318.708	PT439	BLD	668120.3	937810	317.679
PT180	SH	668073.1	937767.9	318.686	PT440	SH	668124.2	937808.2	317.693
PT181	SH	668075.1	937765.4	318.807	PT441	SH	668124.2	937805.5	317.683
PT182	BLD	668076.2	937763	318.99	PT442	SH	668127.7	937808.3	317.623
PT183	SH	668077.8	937762.3	318.92	PT443	SH	668129.9	937805.3	317.555
PT184	SH	668079.4	937758.5	319.226	PT444	SH	668132.3	937808.2	317.557
PT185	SH	668076.9	937758.6	318.98	PT445	SH	668135.2	937805	317.569
PT186	SH	668079.6	937754.5	319.302	PT446	SH	668139.8	937808.7	317.523
PT187	SH	668077.8	937753.6	319.218	PT447	SH	668142.5	937806.5	317.477
PT188	SH	668078.5	937746.8	319.408	PT448	SH	668143.5	937805.6	317.641
PT189	SH	668076.3	937744	319.51	PT449	BLD	668152.8	937810.8	317.334
PT190	SH	668079.7	937740.7	319.611	PT450	BLD	668152.8	937803.9	317.388
PT191	SH	668080.3	937743.2	319.569	PT451	BLD	668120.4	937826.9	317.189
PT192	SH	668078.8	937739.9	319.631	PT452	SH	668123.3	937828	316.989
PT193	SH	668078.8	937737.1	319.719	PT453	SH	668126.8	937828.7	316.943
PT194	SH	668081	937736.3	319.732	PT454	SH	668126.3	937832	316.931
PT195	SH	668078.1	937736.2	319.726	PT455	SH	668123.9	937832.8	316.937
PT196	SH	668074.3	937736.5	319.73	PT456	SH	668121.8	937833.5	316.965
PT197	BLD	668076	937739.9	319.718	PT457	SH	668128	937833	316.904
PT198	SH	668070.5	937735	319.725	PT458	SH	668128.4	937836.4	316.889
PT199	SH	668067.7	937732.6	319.769	PT459	SH	668135.6	937832.3	316.921
PT200	SH	668065.8	937735.6	319.673	PT460	SH	668134.3	937834.4	316.926
PT201	SH	668064.2	937739.6	319.579	PT461	SH	668138.4	937829.2	316.911
PT202	SH	668061	937736.3	319.632	PT462	SH	668141.1	937835.5	316.628
PT203	SH	668060.3	937732.6	319.705	PT463	SH	668120.5	937838.7	317.002
PT204	SH	668057.4	937735.8	319.652	PT464	BLD	668073.3	937862.2	316.453
PT205	SH	668056.3	937739.5	319.449	PT465	SH	668072.4	937859	316.477
PT206	SH	668052.5	937736.1	319.664	PT466	SH	668069.5	937857	316.409
PT207	SH	668050.9	937732.6	319.757	PT467	SH	668065.8	937859.2	316.319
PT208	SH	668048.6	937736.2	319.724	 PT468	SH	668064.3	937857.5	316.229
PT209	BLD	668043.3	937739.9	319.659	 PT469	SH	668063.9	937853.2	316.483
PT210	BLD	668043.6	937731.8	319.686	PT470	SH	668055.7	937859.2	316.296
PT211	BLD	668075.8	937729.8	319.966	PT471	SH	668050.3	937854.7	316.365

PT212	BLD	668079.9	937728.9	320.175	PT472	BLD	668050.1	937852.9	316.654
PT213	BLD	668079.7	937763.4	318.77	PT473	SH	668056.8	937852.8	316.47
PT214	SH	668080.8	937767.6	318.711	PT474	SH	668063.8	937852.2	316.438
PT215	SH	668083.6	937771.3	318.618	PT475	SH	668067.5	937853.8	316.473
PT216	CV	668088.4	937773.9	318.388	PT476	BLD	668073.3	937851.7	316.674
PT217	CV	668088.4	937774.1	318.401	PT477	BLD	668073.4	937838.8	317.02
PT218	CV	668088.9	937774.3	318.362	PT478	SH	668071.2	937834.5	316.988
PT219	CV	668089.2	937774.2	318.355	PT479	SH	668071.7	937829.5	317.224
PT220	CV	668089.7	937774	318.348	PT480	BLD	668073.4	937827.2	317.205
PT221	CV	668089.7	937773.6	318.358	PT481	SH	668067.6	937828.1	317.111
PT222	SH	668092.5	937776.3	318.551	PT482	SH	668064.6	937832.8	317.034
PT223	SH	668090.5	937779.5	318.338	PT483	SH	668061.8	937837.4	316.978
PT224	SH	668092.9	937780.6	318.233	PT484	SH	668056.2	937836.7	316.98
PT225	SH	668091.7	937784.1	318.136	PT485	SH	668057.4	937831	317.048
PT226	SH	668090.5	937787.6	318.117	PT486	SH	668058.5	937827.6	317.15
PT227	SH	668095.2	937788.3	318.215	PT487	SH	668050.6	937828	316.962
PT228	SH	668098.3	937788.8	318.206	PT488	SH	668049.9	937833.6	316.97
PT229	SH	668098.2	937786.1	318.204	PT489	SH	668049	937837	316.957
PT230	SH	668097.9	937782.4	318.229	PT490	BLD	668043.9	937838	317.267
PT231	SH	668097.4	937777.8	318.321	PT491	BLD	668073.7	937792	318.073
PT232	SH	668097.1	937773.1	318.529	PT492	SH	668073.1	937784.7	318.318
PT233	SH	668100.9	937773.3	318.58	PT493	BD	668073.2	937780.3	318.439
PT234	SH	668102.2	937777.1	318.319	PT494	SH	668069.9	937784.4	318.355
PT235	SH	668101.1	937781.3	318.285	PT495	SH	668064.9	937790.3	318.076
PT236	SH	668100.2	937785.2	318.239	PT496	SH	668062.6	937784.4	318.262
PT237	SH	668102.1	937788.4	318.071	PT497	SH	668061.5	937781.1	318.253
PT238	BLD	668103.3	937790.4	317.873	PT498	SH	668054.5	937781.3	318.237
PT239	SH	668105.1	937786.6	318.137	PT499	SH	668053	937785.2	318.171
PT240	SH	668105.9	937783.1	318.189	PT500	SH	668051.4	937789.3	318.097
PT241	SH	668106.2	937778.4	318.236	PT501	SH	668045	937791.3	318.148
PT242	SH	668106.3	937774.5	318.368	PT502	SH	668044.7	937785.9	318.238
PT243	SH	668106.4	937771.7	318.607	PT503	BD	668043.5	937789.4	318.204
PT244	SH	668109.8	937771.4	318.611	PT504	BD	668046.8	937781.7	318.191
PT245	SH	668114.7	937770.8	318.727	PT505	SH	668050.5	937781.3	318.192
PT246	CV	668118.6	937769.6	318.768	PT506	BLD	668073.6	937768.4	318.52
PT247	CV	668118.6	937769.2	318.875	PT507	SH	668072.8	937765.9	318.772
PT248	BLD	668120.4	937768.5	318.906	PT508	SH	668068.1	937767.9	318.712
PT249	SH	668118	937771.4	318.745	PT509	SH	668064.3	937765.9	318.846
PT250	SH	668114.6	937774.6	318.45	PT510	SH	668061.8	937764.8	318.757
PT251	SH	668112.3	937778.2	318.273	PT511	SH	668059.2	937766.6	318.779
PT252	SH	668116.9	937781	318.219	PT512	SH	668056.8	937767.3	318.813
PT253	SH	668114.7	937784	318.086	PT513	SH	668055.6	937765.9	317.208
PT254	SH	668110.9	937786.4	318.028	PT514	SH	668054.7	937765.1	317.217

PT255	SH	668108.3	937788.8	318.063	PT515	SH	668050.4	937765	317.161
PT256	SH	668106.5	937792.3	317.922	PT516	SH	668048.2	937766.1	317.281
PT257	SH	668104.3	937794.3	317.593	PT517	SH	668047.6	937767.1	318.799
PT258	SH	668106.6	937796.8	317.885	PT518	BLD	668043.7	937764.7	322.083
PT259	SH	668110.6	937794.3	317.866					