KWARA STATE POLYTECHNIC, ILORIN. 4 **INSTITUTE OF TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING A Project Research Presentation on:**

PREDICTION OF RUNOFF AND SEDIMENT YIELD OF **OYUN RIVER.**

BY HND/23/CEC/FT/003 HND/23/CEC/FT/9/10 HND/23/CEC/F/1/9187 HND/23/CEC/FT/0287

SUPERVISED BY

ENGR. A.W. MANSUR

JUNE. 2025

PRESENTATION OUTLINE

- > Introduction
- > Problem Statement
- ➤ Aim
- ➤ Objectives
- > Justification
- ➤ Scope Of The Study
- > Literature Review
- > Methodology
- > Results
- > Conclusion And Recommendation
- > References

INTRODUCTION

- > Due to the rapid global urbanization, the natural land covers are tending to be impervious and degrading the natural environment which increase runoff and peak flows that cause flash flooding, affect water quality and other water related problems (Dientz, 2007).
- > Storm water is a form of water generated as a result of all forms of precipitation such as rain, sleet, or melting snow. In an ideal situation, only a small percentage of storm water becomes surface runoff.
- ➤ This runoff usually flows into the nearest stream, creek, river, lake, or wetland. Runoff can cause problems like erosion of stream banks, flood increase and reduction in water quality (Agouridis et al., 2013

INTRODUCTION Cont'd

- ➤ However, the use of pipeline drainage system has usually caused an increase in the discharge and velocity of runoff which poses danger to the downstream part of the water bodies in form of flooding.
- ➤ It is quite noted that the generated runoff carries along sediments which have great impacts on water quality, water reservoir capacity, and agricultural productivity of such area (Gyamfifi et al., 2016).

PROBLEM STATEMENT

- > The Oyun River Watershed faces challenges such as increased runoff, flooding, and sedimentation due to urbanization and deforestation.
- > These issues impact water quality, aquatic habitats, and infrastructure. There is a need for a comprehensive study to predict runoff and sediment yield to inform sustainable watershed management practices

AIM AND OBJECTIVES

► The aim of this study is to predict runoff and sediment yield in Oyun River Watershed.

objectives are:

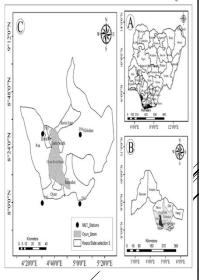
- ▶ To develop a hydrological model of Oyun River.
- ► To predict runoff and sediment yield in the Oyun River Watershed using the Soil and Water Assessment Tool (SWAT)
- ► To evaluate spatial variations of sediment yield and runof

7

JUSTIFICATION OF PROJECT

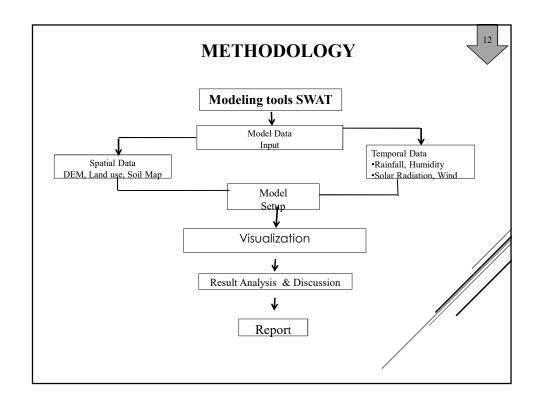
- ➤ The study on predicting runoff and sediment yield in the Oyun River Watershed using the SWAT model is vital due to its environmental and socioeconomic significance. It will help maintain hydrological balance, support ecosystems, and ensure water supply for Ilorin's domestic, agricultural, and industrial needs.
- ➤ By understanding and managing runoff and sedimentation, the study aims to preserve water quality, protect habitats, and enhance agricultural sustainability. It addresses the impacts of rapid urbanization, providing insights for sustainable urban planning and infrastructure development.

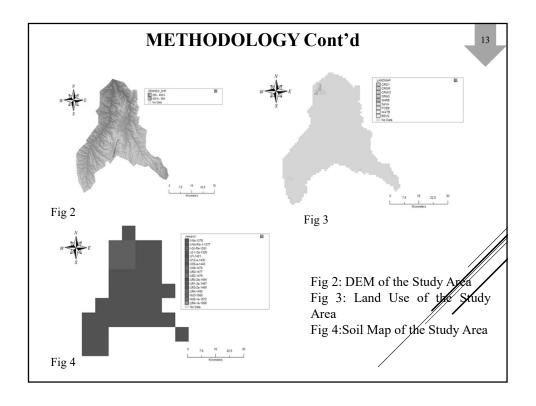
SCOPE OF THE STUDY


- > The scope of this project on predicting runoff and sediment yield in the Oyun River Watershed, was carried out using the SWAT model and also include defining the study area, collecting and analyzing hydrological and geospatial data, and setting up the SWAT model. It will simulate runoff and sediment yield, and provide recommendations for sustainable watershed management and urban planning.
- > Additionally, the project involved engaging with local stakeholders to raise awareness and ensure the implementation of recommended practices.

	-	LITERA	ATURE REVIEV	\mathbf{V}
S/N	TITLES	AUTHOR(S)	CORE FINDINGS	RESEARCH GAPS
1	Comparison of	Pengfei Li,	The study compared	The study identified the
	soil erosion	et al.	various soil erosion	need for integrating more
	models used to	(2021)	models and found that	field data to improve
	study the Chinese		certain models	model accuracy and the
	Loess Plateau		performed better in	requirement for long-term
			specific conditions.	monitoring data.
2	Rainfall-Runoff	Seifu	The SWAT model was	The study noted the need
	Modeling and Its	Kebede	used to prioritize sub-	for more detailed spatial
	Prioritization at	Debela, et	watersheds based on	data and the integration
	Sub-Watershed	al. (2020)	runoff potential, showing	of land use changes over
	Level Using SWAT		variability in runoff and	time to improve model
	Model: A Case of		sediment yield across	predictions.
	Finca'aa,		different sub-	
	Oromia, Western		watersheds.	
	Ethiopia			

	LITERATURE REVIEW 10				
S/N	TITLES	AUTHOR(S)	CORE FINDINGS	RESEARCH GAPS	
3	Assessment of	Kamel	The SWAT model accurately	Highlighted the	
	Sediment Yield	Khanchoula,	simulated sediment yield in	need for better	
	Using SWAT	et al. (2019)	the Kebir watershed,	calibration	
	Model: Case		identifying critical areas	techniques and	
	Study of Kebir		prone to erosion.	more precise input	
	Watershed,			data to enhance	
	Northeast of			model	
	Algeria			performance.	
4	Using SWAT Model	Nasrin Zalaki-	The SWAT model was effective in	The study called for	
	to Determine		predicting runoff and sediment		
	Runoff, Sediment	,	yield, emphasizing the impact of		
	Yield in Maroon-			and the need to	
	Dam Catchment		hydrological processes.	account for human	
				activities affecting	
				runoff and sediment	
				yield.	


DESCRIPTION OF STUDY AREA


- ➤ Oyun River, a prominent waterway located in Kwara State, one of Nigeria's 36 states, meanders through a diverse landscape, traversing several local government areas including Ifelodun, Irepodun, Asa, Oyun, and Ilorin East.
- > This river, with its extensive network and intricate ecosystem, plays a pivotal role in shaping the geography and livelihoods of the region's inhabitants.
- > Its waters serve as a vital resource for agriculture, providing sustenance to local communities and contributing significantly to the state's economic activities

11

Fig 1:map of the study area

RESULTS AND DISCUSSIONS The hydrological model was created in M using the SWAT Tools extension for catchment and river delineation. The basin consists of 14 sub-basins, covering a total area of 1721.92 square meters. Each sub-basin functions as a smaller catchment area within the larger basin. Fiq 5; boundaries of each sub-basin.

15

RESULTS AND DISCUSSIONS Cont'd

Subbasins	FLOW_INcms	FLOW_OUTcms
1	223.86	164.78
2	2.63	109.48
3	19.58	93.61
4	392.60	178.88
5	40.52	86.79
6	4.94	63.72
7	249.95	50.09
8	280.23	56.13
9	64.60	12.95
10	75.04	15.04
11	170.53	34.18
12	67.79	13.59
13	77.38	15.51
14	52.28	10.47

Table 1: Summary	of Flow	in and	Flow	out of
the Subbasins				

Subbasin	SED_INtons	SED_OUTtons	SEDCONCmg_kg
s			
1	2697453.74	2312698.60	7080.74
2	1682327.34	1673002.63	9548.95
3	1497807.03	1442632.43	9751.91
4	3066514.45	2426235.75	6259.84
5	1551948.58	1480801.35	9326.02
6	1076378.85	1060726.62	10868.35
7	824505.04	824108.18	12511.15
8	725316.06	724080.71	11316.05
9	238441.88	238423.87	14382.32
10	350899.0	350854.2	19018.7
11	723114.1	722998.9	17102.2
12	303016.0	303013.8	14430.2
13	233228.2	233199.4	13862.8
14	140895.1	140892.4	12179.5
			<i>(/ /</i> /

Table 2:Summary of Sediment in Sediment Out, and Sediment Concentration in the Subbasins

RESULTS AND DICUSSIONS Cont'd

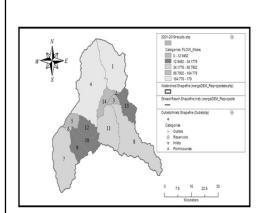


FIG 6: FlowIN Spatial Variation Map

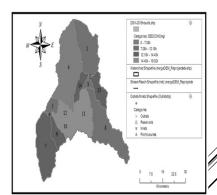


FIG 7:FlowOUT Spatial Variation Map

CONCLUSIONS

Based on the result of the research work, it was concluded that:

- ▶ The hydrological model developed for the Oyun River using the SWAT tool has proven effective in predicting runoff and sediment loadings throughout the watershed.
- ▶ The flow analysis reveals significant spatial variation across the subbasins, with subbasins 1, 4, 7, and 8 contributing the highest inflows. In several cases, such as subbasin 2, low inflows paired with high outflows suggest additional inputs from upstream or lateral sources. Discrepancies between flow-in and flow-out in many subbasins indicate potential internal storage, groundwater recharge, or human-induced withdrawals.
- ▶ Sediment analysis shows that larger subbasins carry higher sediment loads due to greater catchment size and flow, while smaller subbasins like 10 and 10 exhibit the highest sediment concentrations, indicating localized erosion—This variation highlights both widespread sediment transport and specific erosion—prone areas, underlining the need for targeted soil conservation and watershed protection measures.
- ► The spatial analysis identified key sub-basins, particularly sub-basin 4, as areas with the highest risk of sediment accumulation

RECOMMENDATIONS

The following are the recommendations based on the outcome of this study:

- ▶ Implement improved waste management practices at the abattoir to minimize the discharge of organic waste into the river. This should include the installation of proper waste treatment facilities and regular maintenance.
- ▶ Involve the local community and stakeholders in conservation efforts by raising awareness about the impact of abattoir activities on water quality, which could encourage better waste disposal practices.
- ► Establish an ongoing water quality monitoring program that focuses on sediment and nitrate levels in the river. This will help detect any sudden changes in loadings and enable timely interventions.
- ► Further research can be done to explore the effects of different land assessenarios and climate change projections on sediment and nitrate loadings in the river.

17

SELECTED REFERENCES

- ▶ Abdelwahab, Ossama M.M., et al. "Runoff and Sediment Yield Modeling in a Medium-Size Mediterranean Watershed." Water Resources Management, vol. 32, no. 11, 2018, pp. 3679-3691.
- ▶ Adeogun, Adeniyi Ganiyu, et al. "Simulation of Sediment Yield at the Upstream Watershed of Jebba Lake in Nigeria Using SWAT Model." International Journal of River Basin Management, vol. 16, no. 1, 2018, pp. 1-12.
- ▶ Ahmadia, H., et al. "Runoff and Sediment Yield Modeling Using WEPP in a Semi-Arid Environment (Case Study: Orazan Watershed)." Soil & Tillage Research, vol. 180, 2018, pp. 1-10.
- ▶ Chen, P., et al. "Assessment of Soil Loss from Land Use/Land Cover Change and Disasters in the Longmen Shan Mountains, China." Natural Hazards and Earth System Sciences, vol. 18, no. 10, 2018, pp. 2791-2805.
- ► Chandra, Prabhat, et al. "Prediction of Sediment Erosion Pattern in Upper Tapi Basin, India." International Soil and Water Conservation Research, vol. 7, no. 1, 2019, pp. 74-82.
- ▶ Dar, Sarvat Gull, and Ayaz Mehmood Dar. "Modeling Runoff and Sediment Yield in Highly Gullied Regions of Kashmir Using SWAT Model: A Last Study of Lolab Watershed." Environmental Monitoring and Assessment, vol. 190, no. 12, 2018, pp. 1-13.

20

19

THANKS FOR LISTENING