Chapter Five

Conclusion and Recommendation

5.1Conclusion

A hybrid dryer which combines direct solar drying for drying with solar panel powered system for air flow was designed and fabricated in the department of agricultural and bioenvironmental engineering technology, institute of technology, kwara state polytechnic, llorin. The dryer was able to dry wet cocoa bean effectively.

5.2Recommendation

The following recommendations were drawn from the study

- It is recommended that a load cell with Personal Computer interface should be incorporated into the drying chamber to know the weight of products in the dryer at every time interval.
- It is recommended that a wheel (Tyre) should be at the stand of the dryer for easy movement.
- The size of the drying chamber should increase for large scale drying, as well as the size of solar panel and capacity of the battery.

References

Akinmoladun, O. P., Adebayo, F., & Akanbi, A. O. (2022). Maintenance practices and durability of solar dryers in agricultural use. Energy Conservation and Management, 116, 38-47.

Akinola, O. A., Ogunlade, B., & Babarinde, A. A. (2022). Performance analysis of indirect solar dryers for agricultural products. Renewable Energy, 15(3), 112-121.

Adeoye, O. M., & Olaniyi, T. K. (2020). Improving energy efficiency in hybrid solar drying systems: A review. Energy Reports, 6, 223–233.

Agunbiade, S., & Adebayo, T. O. (2022). Hybrid solar dryers: Bridging the gap in cocoa drying processes. African Journal of Agricultural Engineering, 14(3), 156-167.

Ahmed, M. S., Ibrahim, A., & Hassan, Y. T. (2020). Thermal storage in solar drying systems: Advances and challenges. Renewable Energy Journal, 35(4), 205-214.

Afoakwa, E. O. (2010). Chocolate Science and Technology. Wiley-Blackwell.

Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2011). Cocoa drying and its impact on flavor precursors. Critical Reviews in Food Science and Nutrition, 51(8), 751-774.

Ali, A., Tiwari, A., & Rizvi, S. (2021). Reduction of carbon emissions using solar drying systems in agriculture. Environmental Impact Assessment Review, 85, 106-115.

Ampratwum, D. B., & Dorvlo, A. S. S. (2007). Design and performance of solar dryers for cocoa beans. Renewable Energy, 32(12), 2063-2076.

Bala, B. K., & Debnath, D. (2012). Solar drying technology and its application in agriculture.

Drying Technology, 30(10), 1123-1132.

Balde, J. (2021). Challenges in adopting solar-powered dryers in developing countries: A review.

Energy for Sustainable Development, 60, 27-37.

Chandra, R., & Arora, A. (2019). Cost-benefit analysis of solar drying in agricultural applications. Renewable Energy, 142, 248-255.

Chavan, U. D., Patil, J. V., & Kadam, S. S. (2022). Minimizing microbial contamination during solar drying of agricultural products. Food and Bioprocess Technology, 9(3), 257-265.

Dutta, D., & Singh, M. (2020). Weather dependency and hybrid systems in solar drying technologies. Renewable Energy Technology Reviews, 10(1), 82-90.

Ekechukwu, O. V., & Norton, B. (2001). Review of solar-energy drying systems II: An overview of solar drying technology. Energy Conversion and Management, 40(6), 615-655.

Energy, Sustainability, and Society (2021). Design, fabrication, and performance evaluation of solar dryer for agricultural produce. BioMed Central. Available at: Energy, Sustainability, and Society Journal.

Eze, C. C., Okonkwo, I. K., & Ogbu, E. C. (2021). IoT applications in agricultural solar drying systems: Case studies and future directions. International Journal of Smart Agriculture, 8(1), 45-60.

Fagunwa, F. O., Olatunji, K. T., & Oke, A. R. (2019). Optimization of cocoa drying systems: A focus on quality retention. Agricultural Science and Technology, 18(3), 225-231.

FAO. (2020). The future of food and agriculture: Trends and challenges. Food and Agriculture Organization.

ICCO (International Cocoa Organization). (2021). Cocoa Market Report. Available at: https://www.icco.org.

Koya, O. A., Adebusoye, K. A., & Awogbemi, O. (2014). Development of an intermittent solar dryer for cocoa beans. Journal of Solar Energy Research, 8(1), 56-67.

Kumar, A., Tiwari, S., & Sharma, R. (2021). Moisture content and quality control in solar drying of cocoa beans. Journal of Agricultural Engineering Research, 18(2), 45-59.

Leong, H., Lee, J., & Khor, M. (2020). Quality and preservation of cocoa beans in solar drying systems. Food Processing and Technology, 41(4), 569-574.

Madarang, J. D. (2019). Performance evaluation of a solar-powered cocoa dryer with hybrid thermal energy storage. Journal of Agricultural Engineering Research, 75(4), 120-130.

Mohammed, A., Ibrahim, Y., & Umar, H. (2022). Economic barriers to solar dryer adoption for smallholder farmers in sub-Saharan Africa. International Journal of Renewable Energy, 51(7), 3452-3460.

Nair, R., Kumar, S., & Singh, D. (2020). Solar dryers: An eco-friendly solution for agricultural drying. Journal of Cleaner Production, 248, 119-132.

Nair, R. S., Soni, D., & Keshav, P. (2021). Hybrid solar drying systems: A solution to weather unpredictability in agriculture. Renewable and Sustainable Energy Reviews, 131, 109-118.

Nalubega, J. F. (2015). Design and construction of a cocoa bean solar dryer for smallholder farmers. Dissertation, Busitema University. Available at: Busitema University Institutional Repository.

Nduka, O. M., Okoli, J. S., & Akpan, A. A. (2021). Impact of solar drying on the quality of cocoa beans: A comparative study. International Journal of Food Science & Technology, 56(5), 1345-1353.

Obi, C. A., & Ugwuishiwu, B. O. (2023). Quality assessment of solar-dried cocoa beans in controlled environments. International Journal of Food Science & Technology, 58(4), 678-689.

Olunloyo, V. O., Ajibola, A. O., & Adeyemo, S. O. (2016). Performance evaluation of solarpowered cocoa dryers. Journal of Agricultural Engineering, 23(2), 45-59. Patel, S., Vashi, S., & Sheth, N. (2023). Maintenance needs and performance optimization in solar-powered agricultural dryers. Journal of Renewable and Sustainable Energy, 15(1), 193-205.

Perez, J. M., Morales, J. R., & Muñoz, L. M. (2022). Economic assessment of solar drying systems in smallholder farms: A case study of cocoa drying. Renewable and Sustainable Energy Reviews, 69, 528-535.

Singh, V., Patel, H., & Mehta, P. (2021). Comparative analysis of thermal storage-assisted solar dryers for crop drying. Renewable and Sustainable Energy Reviews, 34, 85-97.

Zahouli, I. B., Kouadio, N. J., & Coulibaly, B. (2010). Impact of post-harvest practices on cocoa bean quality. International Journal of Postharvest Technology, 5(3), 23-31.