A PROJECT REPORT

ON

PROPOSED CASSAVA PROCESSING FACTORY

FOR

OWU ISIN LOCAL GOVERNMENT AREA. KWARA STATE.

BY

IBRAHIM AYODEJI IBRAHIM

HND/23/ARC/FT/0019

SUBMITTED TO:

THE DEPARTMENT OF ARCHITECTURAL TECHNOLOGY INSTITUTE OF ENVIRONMENTAL STUDIES (I.E.S) KWARA STATE POLYTECHNIC, ILORIN.

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF HIGHER NATIONAL DEPLOMA (HND) IN ARCHITECTURAL TECHNOLOGY

JULY, 2025.

DECLARATION

I Ibrahim A	yodeji	Ibrahim	with	matric	no.	HNI	D/23/AF	RC/FT	/0019	of	the
department	of Arc	hitectura	l tech	nnology	her	eby	declare	that	this	pro	ject
'MODERN C	CASSA	VA PROC	CESSI	NG FA	CTO	RY'v	was com	piled	by me		
SIGNA	TURE						\mathbf{D}	ATE			

CERTIFICATION

I certify that this research project Modern Cassava Processing Factory has been read and approved as meeting the requirement for the Award of Higher National Diploma (HND) in Architectural technology, Institute of Environmental Studies (I.E.S), Kwara State Polytechnic, under the supervision of Arc. Olarewaju F.A.

ARC. OLAREWAJU F.A	
(Project supervisor)	SIGNATURE/DATE
ARC. OLAREWAJU F.A	
(Project Coordinator)	SIGNATURE/DATE
ARC. MRS. J.M TOMORI	
(Head of Department)	SIGNATURE/DATE
EXTERNAL SUPERVISOR	SIGNATURE/DATE

DEDICATION

I hereby dedicate this research to the Almighty God for His faithfulness and favour upon me, and to my lovely parents: Mr. Jamiu Ibrahim and my late mother, Mrs. Fatimah Ibrahim, for their love and support throughout this project

ACKNOWLEDGEMENT

I humbly acknowledge God Almighty for his grace, the author of life and grace, that gave me the opportunity to complete this project, he made everything workout perfectly in his own time.

I would like to say thank you to Arc.Olarewaju F.A who thoughly supervise this work.

To the head of department, Mrs. Tomori J. M, I say a big thank you for the leadership role played in the department which lead to this timely completion of this program. God bless you all abundantly.

I cannot but appreciate my lovely family: MrJamiu Ibrahim and my late mum Mrs Fatimah Ibrahim for your love, support and care during the course of study. Thanks to my siblings Ibrahim hazeem, Ibrahim azeezat, Ibrahim rukayat, and Ibrahim mariam.

To my friends that supported me, Iseoluwa grace, Faruq Mujaheed and other that I didn't mention, I say a big thanks you for the time and I value time I have with you all.

TABLE OF CONTENT

Title	e Page	
Dec	claration	ii
Cert	tification	iii
Ded	dication	iv
Ack	knowledgment	V
Tab	le of content	vi-vi
List	t of plates	viii
	t of Figures	
	t of Appendix	
Abs	stract	xi
CH.	APTER ONE	
1.0	General Introduction	1-3
1.1	Historical background of the project	3-4
1.2	Definition	4-5
1.3	Statement of design problem	5-6
1.4	Aim and Objectives of the study	6
1.5	Project justification	
1.6	Clients background	7-8
1.7	Scope of the study	8-9
1.8	Limitation of design	9-10
1.9	Research Methodology	10-11
CH	APTER TWO	
2.0	Review of relevant Literature	12-18
CH	APTER THREE	
3.0	Case studies	19
3.1	Case study one	19-21
3.2	Case study two	22-24
3.3	Case study three	25-27
3.4	Case study four	28-30
3.5	Case study five (online case study)	31-33
3.6	Deduction from Case study	34
CH	APTER FOUR	
4.0	Introduction to study area	
4.1	Historical background of OwuIsin	35-36

4.2	Physical feature of the location	36
4.3	Population of kwara State (and OwuIsin)	36
4.4	Social service	
4.4.1	Road Network	37
4.4.2	Health service	37
4.4.3	Water and electricity	38
4.5	General climatic condition	38
4.5.1	Wind	38
4.5.2	Temperature	39
4.5.3	Vegetation	39
4.6	Site analysis	39
4.6.1	Site selection/justification	39
4.7	Design Concept/Planning principle	42-43
CHA	PTER FIVE	
5.0	Design report	44
5.1	Design brief	44-45
5.2	Design appraisal	45
5.3	Design characteristics	45-46
5.4	Building structure	46
5.5	Service	46-47
5.6	General requirement	47-48
5.7	Material and finishes	48-49
5.8	Summary and conclusion	49
5.8.1	Summary	49
5.8.2	Conclusion	49
Reco	mmendation	50-51
Refer	rences	52
Anne	ndix	53-61

LIST OF PLATES

Plate 1.1-1.2: Approach And Side View Of Case Study One
Plate 1.3-1.5: Approach View Of Case Study Two
Plate 1.6-1.8:Garri Frying And Cassava Drying Area Of Case Two26-27
Plate 1.9-2.1: Approach View Of Case Study Three29-30
Plate 2.3-2.4: Approach And Side View If Case Study Three32-33
Plate 1.9: Location Plan Of Case Study Four (Online)29
Plate 2.0-2.1: Aerial And Approach View Of Case Study Four (Online)30
Plate 2.3: Location Plan Of Case Study Five (Online)32
Plate 2.4-2.5: Aerial And Approach View Of Case Study Five (Online)33

LIST OF FIGURES

Figure 1.1-1.2: Showing Location Plan And Floor Plan of Case Study One	.20
Figure 1.3: Showing Floor Plan Of Case Study Two	.22
Figure 1.4: Showing Floor Plan Of Case Study Three	25

LIST OF APPENDIX

Appendix 1: Profile and location map	53
Appendix 2: Locational plan and site inventory	. 54
Appendix 3: Site analysis and site plan	. 55
Appendix 4: Bubble diagram and Functional relationship	. 56
Appendix 5: Floor plan and Roof plan	. 57
Appendix 6: Section and elevations	. 58
Appendix 7: Staff area floor and Admin floor plan	. 59
Appendix 8: Production Flowchart	. 60
Appendix 9: Details	61

ABSTRACT

The increasing demand for cassava-based products in Nigeria and the inefficiency of traditional processing methods present a significant challenge in meeting both local consumption and export needs. This project aims to design a modern cassava processing factory that incorporates efficient architectural planning, hygienic workflow systems, and energy-saving technologies to enhance productivity, reduce post-harvest losses, and improve product quality.

The study employed a mixed-methods approach, including field surveys, literature reviews, and case studies of existing cassava processing facilities. Site analysis and environmental considerations were integrated into the architectural design process, alongside 3D modeling and spatial planning software to ensure functional flow and compliance with industrial and safety standards.

The findings revealed that integrating modern mechanical processing units with a well-zoned factory layout significantly improves processing speed, reduces contamination risks, and enhances worker safety. The proposed design allows for a continuous production line—from raw cassava intake, washing, peeling, grating, pressing, drying, to final packaging—within a controlled and hygienic environment.

The project concludes that a purpose-built, modern cassava processing facility can greatly contribute to the agro-industrial sector by improving efficiency, encouraging rural industrialization, and supporting food security. It is recommended that future cassava factories adopt sustainable materials, renewable energy sources, and adaptable designs that can evolve with technological advancements.