CHAPTER FOUR

RESULT AND DISCUSSION

4.0 Results and Discussion

This section presents the experimental results and analysis from both the physical prototype and the simulation of the Automated Railway Level Crossing System. The results are organized around the major functions of the system: train detection, barrier gate operation, traffic signal control, and system responsiveness.

4.1 Summary of Key Functional Results

Tested Function	Expected Behavior	Observed Behavior	Remarks
Train Detection	Detect train within	Detected accurately	Working as
(Approach)	20–30 cm distance	at an average of 25	expected
		cm	
Barrier Closure	Close within 2	Average delay: 1.85	Prompt and smooth
(Servo Motor)	seconds after	seconds	transition
	detection		
Traffic Signal	Switch from green	Instant transition	Properly
(LEDs)	to red upon train	(<0.5 sec)	synchronized
	detection		
Audible Alert	Buzzer should	Loud, consistent	Alert functionality
(Buzzer)	sound when train is	buzz until train	confirmed
	detected	exits	
Train Departure	Detect exiting train	Detected at average	Departure
Detection	within 20–30 cm	of 24.5 cm	successfully tracked
Barrier Re-opening	Reopen barrier	Average re-opening	Normal operation
	within 2 seconds	delay: 1.9 seconds	resumed
	after train exits		
Return to Idle State	Green light comes	System reset	Stable performance
	back ON, buzzer	successfully after	
	OFF, barrier raised	each cycle	

4.2 System Operation Breakdown

A. Train Detection Performance

The ultrasonic sensors (HC-SR04) provided accurate and consistent measurements, both in real-world testing and during simulation. The following table summarizes the sensor detection accuracy:

Test Cycle	Approach Sensor Reading	Departure Sensor Reading
	(cm)	(cm)
1	26	24
2	24	23
3	25	25
4	27	26
5	25	24
Average	25.4	24.4

Sensor readings fluctuated slightly within the 2–3 cm range, which is acceptable for proximity detection. The system reliably identified train presence and departure with a response time of less than 300 milliseconds after detection.

B. Barrier Gate and Servo Motor Response

The servo motors operated using PWM signals to change positions between 0° (closed) and 90° (open). The average time from detection to complete barrier motion is shown below:

Barrier Operation	Target Time	Average Observed	Result
		Time	
Closure	≤2 seconds	1.85 seconds	✓ Within standard
Opening	≤2 seconds	1.9 seconds	✓ Within standard

C. Traffic Signal and Buzzer Synchronization

Traffic lights and the buzzer were activated simultaneously with the servo during train detection. The control logic implemented ensured proper synchronization.

System State	LED Status	Buzzer	Barrier Gate
No Train	Green ON	OFF	Open (90°)
Train Approaching	Red ON	ON	Closing (to 0°)
Train Passing	Red ON	ON	Closed (0°)
Train Departed	Green ON	OFF	Opening (to 90°)

4.3 Achievement of Objectives

Objective	Achievement	
Simulate an automatic railway crossing	Successfully simulated in Tinkercad and	
system using Arduino	implemented on breadboard	
Detect approaching and departing trains	Reliable detection confirmed by multiple	
using ultrasonic sensors	test cycles	
Automatically operate barrier gates and	Smooth servo control and LED/buzzer	
traffic signals	activation observed	
Improve railway crossing safety and	Automation ensures consistent operation,	
reduce human error	removing the risk of human failure	

4.4 Observations and Limitations

Despite the system's reliability in a controlled environment, the following limitations were observed:

- i. Short Sensor Range: Detection is effective only within limited range (2–4 m in real implementation), which may not be sufficient for high-speed trains.
- ii. Environmental Interference: Ultrasonic sensors may be affected by temperature or surface reflectivity.
- iii. Power Dependence: The prototype requires an uninterrupted 5V–9V power supply; fluctuations can cause erratic behavior.

iv. Scale Limitation: Model-scale simulation differs from full-scale real-world dynamics (e.g., train speed, gate size).

4.5 Recommendations for Enhancement

- i. Use long-range LiDAR or IR sensors for better outdoor performance.
- ii. Integrate solar power and backup batteries for rural installations.
- iii. Introduce wireless/GSM modules to alert central control units of faults or unusual activity.
- iv. Add camera-based object detection using Raspberry Pi or AI modules for future scalability.