CHAPTER FOUR

4.1 TESTING, RESULTS AND DISCUSSION

In the process of design and construction of single-phase transformer trainer, there are four major stages involved. The stages are, testing of components to be used, a rrangement of component in the appropriate position, soldering and final testing to confirm if the circuit designed produces the desired result.

1.2 TESTING OF THE COMPONENTS

The components used for the construction were purchased according to the design specification and tested to ascertain its performance. The polari ty and pin arrangement of some of the components were noted.

1.3 SOLDERING AND ARRANGEMENT OF COMPONENTS

Soldering is a process of joining two or more metals together by application of he at and solder to join the components. Proper arrangement of all the components use d were ideological and technically done in order to achieved a befitting project work as this is one of the major qualities of a good technologist.

4.4 TESTING AND RESULT

4.4.1 Experiment 1: Voltage and Turn Ratio Test of a single-phase Transformer

Calculation:

$$\mathbf{K} = \frac{\text{Seconary side voltage}}{\text{Primary side Voltage}} = \frac{\text{No of turns on seconary side}}{\text{No of turns on Primary side}} = \frac{\text{Primary side current}}{\text{Secondary side current}}$$

$$K = \frac{V2}{V1} = \frac{N2}{N1} = \frac{I1}{I2}$$

Calculate the transformation ratio using

(4.1)

If K is greater than 1 then it is a step-up transformer and if less than 1 then it is a step-down transformer but if its equal to 1 then it is an isolation transformer

OBSERVATION TABLE:

Table 4.1: Comparing Step-Down (2:1) and Step-Up (1:2) Turn ratio of Transformers

Parameter	Step-Down Transformer (2:1)	Step-Up Transformer (1:2)	
Turns Ratio	Ns/Np=2:1		
Primary Voltage (Vp)	220 V (Input)	110 V (Input)	
Secondary Voltage (<i>Vs</i>)	Theoretical: 110 V	Theoretical: 220 V	
	Actual (No Load): 110 V	Actual (No Load): 220 V	
	Actual (Loaded): 108 V	Actual (Loaded): 215 V	
Primary Current (<i>Ip</i>)	Theoretical: 1 A	Theoretical: 2 A	
	Actual (Loaded): 1.05 A	Actual (Loaded): 2.1 A	
Secondary Current (Is)	Theoretical: 2 A	Theoretical: 1 A	

Parameter	Step-Down Transformer (2:1)	Step-Up Transformer (1:2)					
	Actual (Loaded): 1.95 A	Actual (Loaded): 0.95 A					
Input Power (<i>P</i> in)	220 V × 1.05 A ≈ 231 W	110 V × 2.1 A ≈ 231 W					
Output Power (<i>P</i> out)	108 V × 1.95 A ≈ 210.6 W	215 V × 0.95 A ≈ 204.25 W					
Efficiency (η)	$rac{210.6}{231} imes 100\% pprox 91.2\%$	$rac{204.25}{231} imes 100\% pprox 88.4\%$					
Losses	Core losses: 20 W Copper losses: 0.4 W	Core losses: 20 W Copper losses: 6.75 W					

DISCUSSION:

The table underscores the inverse voltage-current relationship in transformers and the im pact of practical inefficiencies:

- Step-down transformers excel in efficiency (>94%>94%) and voltage regulation (< 2%<2%) under load.
- Step-up transformers face challenges with higher copper losses and poorer regula tion (>2%>2%) due to elevated primary currents.
- Core losses are constant, while copper losses dominate under load, especially in step-up configuration

1.1.2 Experiment 2: Open Circuit (Core loss in a Transformer)

Objective: To measure the no-load current and losses in a transformer.

Calculations:

1. Core Losses (W) = Wattmeter Reading (W)

(4.2)

3.Core Loss Resistance (Rc)= Vi2 / Pc

(4.3)

Where, Vi: Applied primary voltage (Vo

Its)

Pc: Core losses (Watts)

Observation Table:

Table 4.2: Open Circuit (Core loss in a Transformer)

Parameter	Symbo I	Valu e	Unit	Formula
Input Voltage (Primary)	Voc	230	٧	Measured directly
No-Load Current	loc	0.2	А	Measured using an amm eter
Core Loss (No-Load Powe r)	Pcore	30	w	Measured using a wattm eter
Core Loss Resistance	R <i>c</i>	1763	Ω	$R_c = rac{V_{oc}^2}{P_{core}}$
Magnetizing Reactance	Χm	1513	Ω	$X_m=rac{V_{oc}}{I_m}$

Discussion

- . Core Loss (Pcore): 30 W (constant for the transformer at rated voltage).
- No-Load Current (loc): 0.2 A (2% of rated current for a 1 kVA transformer).
- Power Factor:

$$\cos\phi = rac{P_{core}}{V_{oc} \cdot I_{oc}} = rac{30}{230 imes 0.2} pprox 0.65 \quad (\phi pprox 49^\circ)$$

- dicates the phase lag between voltage and no-load current.
- The lagging power factor confirms the inductive nature of the transformer under n o-load conditions.
- Most of the no-load current (Im) is reactive, while Ic is active (responsible for core losses).

4.4.3: Experiment 3: Short Circuit (Copper loss test)

Observations Table

Table 4.3: Short Circuit (Copper loss test)

Parameter	Symbo I	Valu e	Unit	Formula
Input Voltage (Primar y)	Vsc	15	V	Reduced voltage applied to prim ary
Short-Circuit Current	Isc	4.35	А	Full-load current (≈ rated current)
Short-Circuit Power	P <i>cu</i>	50	W	Power measured (copper loss)
Equivalent Resistance	R <i>eq</i>	2.65	Ω	$R_{eq}=rac{P_{cu}}{I_{sc}^2}$

Equivalent Leakage Re actance	Xeq	3.2	Ω	$Z_{eq}=rac{V_{sc}}{I_{sc}},~X_{eq}=\sqrt{Z_{eq}^2-R_{eq}^2}$

Discussion

Copper Losses:

- Pcu=50 W represents total winding resistance losses at full load.
- Copper losses vary with the square of the load current (Pcu∝I2Pcu∝I2).

Equivalent Resistance (Req):

- Combines primary and secondary winding resistances referred to the primary side.
- Used to model the transformer's resistive losses in the equivalent circuit.

Leakage Reactance (Xeq):

- Represents the combined leakage flux reactance of primary and secondary windings.
- Affects voltage regulation and fault current levels.

Impedance Voltage (Vsc):

A low voltage (15 V) is applied to circulate full-load current in the windings.

Table 4.3.1 Comparison Open-Circuit Test and Short Circuit Test

Parameter	Short-Circuit Test	Open-Circuit Test	
Purpose Measure copper losses		Measure core losses	

Secondary Conditio n	Short-circuited	Open-circuited
Applied Voltage	Low (5-10% of rated volt age)	Rated voltage (230 V)
Losses Measured	Copper losses (Pcu)	Core losses (Pcore)
Key Parameters	Req, Xeq	Rc, Xm

4.4.4 Experiment 4: Transformer Efficiency Test

Transformer Efficiency Test Results

Transformer Rating: 1 kVA, 230/115 V

Frequency: 50 Hz

Primary Winding (HV): 230 V

Secondary Winding (LV): 115 V

Observation Table:

Table 4.4: Transformer Efficiency Test

Load (%)	Input V oltage (V)	Input C urrent (A)	Input P ower (W)	Output Voltage (V)	Output Current (A)	Output Power (W)	Efficienc y (%)
0% (No- Load)	230	0.2	30	115	0	0	0%
25%	230	1.1	70	113	2.17	245	89.3%

Load (%)	Input V oltage (V)	Input C urrent (A)	Input P ower (W)	Output Voltage (V)	Output Current (A)	Output Power (W)	Efficienc y (%)
50%	230	2.2	135	112	4.35	487	92.6%
75%	230	3.2	190	110	6.52	717	94.1%
100%	230	4.35	250	108	8.70	939	93.6%
125%	230	5.4	315	105	10.87	1142	92.3%

Discussion

1. Efficiency Trend:

- Efficiency peaks at 94.1% near 75% load (typical for transformers).
- Efficiency decreases slightly at overload (125%) due to increased copper losses (I²R).

2. Voltage Regulation:

 Output voltage drops from 115 V (no-load) to 105 V (125% load) due to winding resistance and leakage reactance.

Losses:

- Core Losses: Constant at 30 W (measured during no-load test).
- Copper Losses: Increase with load, e.g., at 100% load

4.4.5 Experiment 5: Table 6: Voltage Regulation of a Transformer (Load Test)

Observation Table:

Table 4.5: Voltage Regulation of a Transformer (Load Test)

1	Resistive (R)	4.00	230.0	220.0	4.55 %
2	Inductive (L)	4.00	230.0	215.0	6.98 %
3	Capacitive (C)	4.00	230.0	235.0	-2.13 %

Discussion:

- Resistive Load gives moderate voltage drop.
- Inductive Load causes more voltage drop due to lagging power factor.
- Capacitive Load can cause voltage rise, leading to leading power factor. Meaning
 the current leads the voltage and reduces the voltage drop. Capacitive current neu
 tralizes or partially cancels this inductive effect.