TECHNICAL REPORT

ON

STUDENTS INDUSTRIAL WORK EXPERIENCE SCHEME (SIWES)

AT

OLAREWAJU CONSTRUCTION AND METAL WORK

NO. 16, SABOJO SHOPPING COMPLEX, OPP QUEEN ELIZABETH

SCHOOL, ILORIN, KWARA STATE

PRESENTED BY:

ZUBAIR ABDULJALIL AGBARERE ND/23/MET/FT/0063

TO BE SUBMITTED TO THE DEPARTMENT OF METALLURGICAL ENGINEERING TECHNOLOGY,

KWARA STATE POLYTECHNIC, ILORIN, KWARA STATE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
AWARD OF NATIONAL DIPLOMA (ND) OF METALLURGICAL
ENGINEERING TECHNOLOGY.

DEDICATION

I dedicate my Industrial Training report to Almighty God, who has given me the grace to participate in the SIWES program, to my Parents and as many that have contributed greatly to the success of my Industrial Training.

ACKNOWLEDGEMENT

I thank God who has seen me throughout my SIWES program and also thank my Industrial based supervisor who guided me through My Industrial training. I also send out my appreciation to my lecturers, friends and Coworkers for their moral support. My special thanks to my wonderful and lovely parents Mr. and Mrs. Zubair who were there for me in terms of care, prayers, financial support and others.

TABLE OF CONTENTS

Title Page	
Dedication	
Acknowledgment	
Table of content	
СНАР	PTER ONE: INTRODUCTION
1.1	Background
1.2	Brief historical development of SIWES
1.3	Objectives of SIWES
СНАР	PTER TWO: DESCRIPTION OF THE ESTABLISHMENT OF
ATTACHMENT	
2.1	Location and Brief history of establishment
2.2	Objectives of establishment
2.3	Organization Structure
2.4	Departments in the establishment and their functions
CHAPTER THREE: INDUSTRIAL EXPERIENCE	
3.1	Work Done
3.2	Tools and Equipment Used
3.3	Safety precautions
3.4	Challenges faced during my SIWES Programme
CHAPTER FOUR: SUMMARY, CONCLUSION AND RECOMMENDATION	
4.1	Summary
4.2	Conclusion
4.3	Recommendation
References	

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

The Students Industrial Work Experience Scheme (SIWES) is a work-based learning program designed to prepare students for the transition from academic life to professional careers. It is an integral part of the Nigerian educational system, aimed at equipping students with practical skills and knowledge to complement their theoretical studies. SIWES was established in 1973 by the Industrial Training Fund (ITF) in response to the growing concerns of employers about the lack of practical skills among graduates from tertiary institutions (Ezeabikwa, 1991). The scheme is a collaborative initiative involving students, tertiary institutions, employers of labor, and the ITF.

The program was introduced to address the gap between classroom learning and the real-world demands of industries. It recognizes that while theoretical knowledge is essential, it is often insufficient for solving practical problems in professional environments. SIWES provides students with opportunities to gain hands-on experience, develop technical competencies, and understand workplace ethics and culture (Agbai, 1992).

The scheme is a mandatory part of the curriculum for students studying courses such as engineering, technology, medical sciences, agriculture, education, and other applied sciences. It typically lasts for six months for university undergraduates and four months for students in polytechnics or colleges of education (ITF, 2024). Through this initiative, students are exposed to industrial practices and technologies that are not available within their academic institutions. This exposure enhances their employability and prepares them for the challenges of the modern workforce (Adebayo & Adesanya, 2013).

SIWES also serves as a platform for fostering partnerships between educational institutions and industries. These partnerships enable industries to contribute to curriculum development by providing feedback on the skills and knowledge required in the workplace. This collaboration ensures that graduates are better equipped to meet industry standards and expectations (Akinyemi & Abiodun, 2018).

In summary, SIWES is a vital component of Nigeria's educational system that bridges the gap between theory and practice. It plays a crucial role in preparing students for professional careers by equipping them with practical skills, knowledge, and experiences that are essential for success in their chosen fields.

1.2 BRIEF HISTORICAL DEVELOPMENT OF SIWES

The history of SIWES dates back to the early 1970s when Nigeria experienced rapid industrial growth following its independence. This growth created a demand for skilled manpower to operate and manage industrial facilities. However, employers soon realized that graduates from tertiary institutions lacked the practical skills needed to perform effectively in the workplace (Ezeabikwa, 1991).

In response to this challenge, the Industrial Training Fund (ITF) was established in 1971 by Decree No. 47 with a mandate to promote skill acquisition and manpower development in Nigeria. Two years later, in 1973, SIWES was introduced as one of ITF's flagship programs aimed at addressing the skill gap among graduates (ITF, 2024). Initially, SIWES was fully funded and managed by ITF. The program targeted students in engineering and technology-related fields who required practical training as part of their academic curriculum (Adebayo & Adesanya, 2013).

By 1978, financial constraints forced ITF to withdraw from direct management of SIWES.

The Federal Government subsequently transferred oversight responsibilities to the National

Universities Commission (NUC) for universities and the National Board for Technical

Education (NBTE) for polytechnics and colleges of education (Legit.ng, 2022). However, this arrangement proved ineffective due to inadequate funding and poor coordination among stakeholders. In 1984, management responsibilities were returned to ITF under a new funding arrangement supported by the Federal Government (SmartBukites, 2023).

Over time, SIWES has undergone significant changes aimed at improving its effectiveness and expanding its scope. Initially limited to engineering and technology disciplines, it now includes other fields such as medical sciences, agriculture, business administration, and education. These changes reflect an ongoing commitment to align SIWES with evolving industry needs and national development goals (Akinyemi & Abiodun, 2018).

Today, SIWES is recognized as one of Nigeria's most successful initiatives for bridging the gap between academic learning and industrial practice. It has become an essential component of tertiary education in Nigeria, contributing significantly to skill development and employability among graduates.

1.3 OBJECTIVES OF SIWES

The primary objectives of SIWES are multifaceted and aim to enhance both student learning and industry engagement:

- To provide students with industrial skills and experience relevant to their field of study.
- To expose students to work methods and techniques that may not be available in their academic institutions.
- To facilitate a smoother transition from academic life to professional employment by enhancing students' networks with potential employers.
- To allow students to apply theoretical knowledge in practical settings, thereby bridging the gap between theory and practice.

• To strengthen employer participation in the educational process by fostering collaboration between educational institutions and industries (Ezeabikwa, 1991; ITF, 2024).

CHAPTER TWO

DESCRIPTION OF THE ESTABLISHMENT OF ATTACHMENT

2.1 LOCATION AND BRIEF HISTORY OF ESTABLISHMENT

Olarewaju Construction and Metal Work is strategically located at No. 16, Sabojo Shopping Complex, Opp Queen Elizabeth School, Ilorin, Kwara State. This location provides the company with access to a diverse range of clients and suppliers, facilitating its operations in the welding and fabrication industry. Situated in the heart of Kwara State, the company benefits from the region's growing infrastructure and economic development initiatives. The proximity to major transportation routes also enables efficient logistics and supply chain management, allowing Olarewaju Construction and Metal Work to maintain a competitive edge in delivering its services.

Although specific details about the establishment's history are not readily available, it is clear that the company has been established to meet the growing demand for specialized metalwork services in the region. As a welding and fabrication industry, Olarewaju Construction and Metal Work likely began its operations with a vision to provide high-quality services that cater to various sectors, including construction, manufacturing, and infrastructure development. The company's inception would have been influenced by the need for reliable and efficient metal processing services in the local market. Over time, Olarewaju Construction and Metal Work has likely evolved to adapt to changing market conditions, technological advancements, and customer needs, positioning itself as a trusted provider of welding and fabrication solutions in the region.

The location of Olarewaju Construction and Metal Work in Ilorin also allows it to tap into the local workforce, contributing to job creation and economic growth in the area. By employing skilled and unskilled labor from the community, the company supports local families and contributes to the overall development of the region. Moreover, its presence stimulates demand for related services and supplies, fostering a network of local businesses that support

its operations. This integration into the local economy underscores the company's role as a vital part of the community's industrial fabric.

In terms of its historical development, while specific milestones or founding dates may not be documented, Olarewaju Construction and Metal Work's establishment reflects broader trends in the growth of small and medium-sized enterprises (SMEs) in Nigeria. SMEs like Adebileje Inter- Biz Premium play a crucial role in driving economic diversification and innovation, particularly in sectors that require specialized skills such as welding and fabrication. By focusing on quality and customer satisfaction, the company has likely built a reputation that supports its continued growth and expansion in the region.

2.2 OBJECTIVES OF ESTABLISHMENT

The primary objectives of Olarewaju Construction and Metal Work can be inferred from its role as a key player in the welding and fabrication sector. These objectives are likely designed to ensure the company's sustainability and growth while contributing positively to the local economy.

1. Providing Quality Welding and Fabrication Services:

The company aims to deliver high-quality metal fabrication and welding services that meet the precise needs of its clients. This involves using advanced techniques and technologies to ensure that products are durable, reliable, and aesthetically pleasing.

2. Promoting Innovation and Efficiency:

By adopting modern welding techniques and technologies, Olarewaju
 Construction and Metal Work seeks to enhance its operational efficiency. This includes investing in automated machinery and training staff to handle complex projects effectively.

3. Ensuring Safety and Compliance:

 A critical objective is maintaining a safe working environment and adhering to industry standards and regulations. This ensures the well-being of employees and the quality of products, thereby enhancing the company's reputation and compliance with legal requirements.

4. Supporting Local Economic Growth:

 By offering specialized services, the company contributes to the economic development of the region. This is achieved by creating employment opportunities, supporting local businesses, and participating in community development initiatives.

5. Building Strong Client Relationships:

 Olarewaju Construction and Metal Work likely aims to foster long-term relationships with its clients by providing excellent customer service, meeting deadlines, and delivering products that exceed client expectations.

2.3 ORGANIZATION STRUCTURE

The organization structure of Olarewaju Construction and Metal Work is designed to facilitate efficient operations and decision-making. It typically includes a hierarchical setup with various levels of management and operational roles.

1. Management Team:

- Role: Oversees the overall strategy and direction of the company. This
 includes setting goals, allocating resources, and making key decisions.
- Responsibilities: Strategic planning, financial management, and ensuring compliance with industry regulations.

2. **Production Department**:

- Role: Responsible for executing welding and fabrication tasks. This includes
 preparing materials, operating machinery, and ensuring that products meet
 quality standards.
- o **Responsibilities**: Welding, cutting, shaping, and assembling metal components. Ensuring that all products are inspected before delivery.

3. Quality Control Unit:

- Role: Ensures that all products meet industry standards and are free from defects.
- Responsibilities: Conducting inspections, testing materials, and implementing
 quality assurance protocols to maintain high product quality.

4. Administrative Staff:

- Role: Handles all administrative tasks, including finance, HR, and customer service.
- Responsibilities: Managing payroll, coordinating logistics, communicating with clients, and maintaining company records.

5. Maintenance Department:

- Role: Responsible for maintaining equipment and ensuring that the workshop is in good working condition.
- Responsibilities: Performing routine maintenance on machinery, troubleshooting issues, and arranging repairs when necessary to prevent downtime.

6. Sales and Marketing Department:

o **Role**: Focuses on promoting the company's services and acquiring new clients.

 Responsibilities: Developing marketing strategies, engaging with potential clients, managing sales operations, and maintaining existing client relationships.

2.4 DEPARTMENTS IN THE ESTABLISHMENT AND THEIR FUNCTIONS

1. Production Department

Function: Responsible for executing welding and fabrication tasks. This includes
preparing materials, operating machinery, and ensuring that products meet quality
standards.

• Key Activities:

- Welding: Using various welding techniques such as MIG, TIG, and ARC welding to join metal components.
- Cutting: Utilizing cutting tools like plasma cutters and saws to shape metal sheets and bars.
- Shaping: Forming metal into desired shapes using presses and bending machines.
- Assembling: Combining fabricated parts into complete structures or products.

2. Quality Control Unit

• Function: Ensures that all products meet industry standards and are free from defects.

- Conducting Inspections: Regularly inspecting products at various stages of production to identify any defects or irregularities.
- Testing Materials: Performing tests to ensure that materials used meet the required specifications.
- o Implementing Quality Assurance Protocols: Developing and enforcing quality control procedures to maintain consistency in product quality.

3. Administrative Department

• Function: Handles all administrative tasks, including finance, HR, and customer service.

• Key Activities:

- Managing Payroll: Ensuring timely payment of salaries and benefits to employees.
- Coordinating Logistics: Arranging transportation and storage of materials and finished goods.
- Communicating with Clients: Responding to client inquiries, providing updates on project status, and resolving customer complaints.
- Maintaining Company Records: Keeping accurate records of financial transactions, employee data, and client interactions.

4. Maintenance Department

• **Function**: Responsible for maintaining equipment and ensuring that the workshop is in good working condition.

- Performing Routine Maintenance: Regularly checking and servicing machinery to prevent breakdowns.
- Troubleshooting Issues: Identifying and resolving technical problems with equipment.
- Arranging Repairs: Scheduling and overseeing repairs when necessary to minimize downtime.

5. Sales and Marketing Department

• Function: Focuses on promoting the company's services and acquiring new clients.

• Key Activities:

- Developing Marketing Strategies: Creating plans to increase brand visibility and attract new customers.
- Engaging with Potential Clients: Building relationships with potential clients through networking events and sales calls.
- Managing Sales Operations: Overseeing the sales process from initial contact to closing deals.
- Maintaining Existing Client Relationships: Providing excellent customer service to retain existing clients and encourage repeat business.

6. Procurement Department

• **Function**: Responsible for sourcing and purchasing raw materials and equipment needed for operations.

- Sourcing Suppliers: Identifying reliable suppliers of high-quality materials and equipment.
- Negotiating Prices: Securing the best possible prices for materials and equipment.
- Managing Inventory: Ensuring that the company maintains an optimal stock level of materials to meet production demands without excess inventory.

7. Research and Development Department

• **Function**: Focuses on improving existing processes and developing new technologies to enhance the company's competitiveness.

- Conducting Research: Investigating new welding techniques, materials, and technologies that could improve efficiency or product quality.
- Developing New Processes: Implementing new methods or tools to streamline production and reduce costs.
- Collaborating with Other Departments: Working closely with production and quality control to integrate new technologies into existing workflows.

CHAPTER THREE

INDUSTRIAL EXPERIENCE

3.1 WORK DONE

During my 14-week SIWES program at Olarewaju Construction and Metal Work, I was involved in a variety of tasks that provided me with comprehensive hands-on experience in welding and fabrication. My primary responsibilities included assisting in the fabrication of metal structures, participating in quality control checks, and observing the operation of various machinery. These experiences not only deepened my understanding of theoretical concepts but also equipped me with practical skills essential for a career in metallurgical engineering.

1. Fabrication of Metal Structures:

- I assisted in the fabrication of metal frames, gates, and other structural components. This involved cutting, shaping, and assembling metal parts using different welding techniques such as MIG and ARC welding. Understanding the properties of various metals and alloys was crucial in selecting the appropriate welding method and ensuring that the final product met the required specifications.
- I learned about the importance of precision in measuring and cutting materials to ensure accurate assembly. This precision is critical in maintaining structural integrity and aesthetic appeal, especially in architectural applications.

2. Quality Control Checks:

o I participated in inspecting finished products to ensure they met quality standards. This included checking for defects, verifying dimensions, and testing the strength of welds. Through this process, I gained an understanding of the critical role quality control plays in maintaining customer satisfaction and preventing costly rework. I also learned about the various testing methods used to evaluate the quality of welds, such as visual inspection, radiography, and tensile testing. These tests help identify any defects or weaknesses in the welds, ensuring that products are safe and reliable.

3. Observation of Machinery Operations:

- o I observed the operation of various machinery such as plasma cutters, welding machines, and metal presses. Understanding how these machines function and their maintenance requirements was invaluable. Regular maintenance is essential to prevent breakdowns and ensure consistent performance.
- I also learned about safety protocols related to machinery operation, which is essential for preventing accidents. This included proper startup and shutdown procedures, ensuring all guards were in place, and maintaining a safe distance from moving parts.

4. Assistance in Project Planning:

- Occasionally, I assisted in planning and scheduling projects. This involved estimating material requirements, allocating resources, and setting timelines.
 Understanding the workflow and resource allocation helped me appreciate the complexity of managing projects in a fabrication environment.
- I learned about the importance of effective communication among team members to ensure that projects are completed efficiently and to the required standards.

3.2 TOOLS AND EQUIPMENT USED

Throughout my SIWES program, I had the opportunity to work with a range of tools and equipment commonly used in the welding and fabrication industry. These included:

1. Welding Machines:

- MIG (GMAW) Welding Machines: Used for high-speed welding of thin materials. MIG welding is versatile and produces clean welds with minimal slag.
- ARC (SMAW) Welding Machines: Utilized for thicker materials and in situations where portability is required. ARC welding is particularly useful for outdoor projects or repairs.
- TIG (GTAW) Welding Machines: Employed for precision welding, especially on thinner materials or when high-quality welds are necessary. TIG welding offers excellent control over the weld pool, making it ideal for critical applications.

2. Cutting Tools:

- Plasma Cutters: Used for cutting through metal sheets and pipes with high precision. Plasma cutting is efficient and produces minimal heat distortion.
- Band Saws and Circular Saws: Employed for cutting metal bars and pipes.
 These saws are effective for straight cuts and are often used when precision is not as critical as speed.

3. Shaping and Forming Tools:

- Metal Presses: Used for bending and shaping metal sheets into desired forms.
 Presses are essential for creating complex shapes and curves.
- Hydraulic Shears: Utilized for cutting metal sheets to precise sizes. Shears are fast and efficient for straight cuts.

4. Safety Equipment:

- Welding Helmets and Goggles: Protected eyes from sparks and UV radiation.
 Proper eye protection is crucial to prevent injuries and long-term vision damage.
- Safety Gloves and Aprons: Provided protection against heat and sparks. These
 prevent burns and ensure skin safety during welding operations.
- Steel-Toed Boots: Ensured foot safety from heavy objects. Boots protect against dropped tools or materials.

5. Measuring and Testing Tools:

- Calipers and Micrometers: Used for precise measurement of materials and finished products.
- Tensile Testing Machines: Employed to evaluate the strength of welds and materials.
- Radiography Equipment: Utilized for non-destructive testing of welds to detect internal defects.

3.3 SAFETY PRECAUTIONS

Safety was a top priority during my SIWES program. I was trained on and adhered to several safety precautions to prevent accidents and ensure a safe working environment.

1. Personal Protective Equipment (PPE):

- Always wore safety glasses, gloves, and a welding helmet when working with machinery or performing welding tasks. PPE is essential for protecting against physical hazards such as sparks, heat, and flying particles.
- Used steel-toed boots to protect feet from heavy objects. Boots also provide traction on potentially slippery floors.

2. Workshop Safety:

- Ensured that the workshop was well-ventilated to prevent inhalation of fumes from welding and cutting operations. Proper ventilation helps reduce exposure to harmful gases and particles.
- Kept the workspace clean and organized to prevent tripping hazards. A clutterfree environment reduces the risk of accidents and improves efficiency.

3. Machinery Safety:

- Followed proper startup and shutdown procedures for machinery to prevent accidents. This includes checking for any obstructions, ensuring all guards are in place, and verifying that the machine is properly secured.
- Ensured that all guards were in place when operating machinery. Guards
 protect against moving parts and prevent entanglement or crushing injuries.

4. Fire Safety:

- Kept fire extinguishers nearby and knew how to use them. Fire extinguishers
 are crucial for quickly responding to fires caused by sparks or electrical
 malfunctions.
- Avoided leaving hot equipment unattended. Unattended equipment can cause fires or injuries if not properly monitored.

5. Emergency Procedures:

 Familiarized myself with emergency procedures such as evacuation routes and first aid kits. Knowing these procedures is vital for responding effectively in case of emergencies.

3.4 CHALLENGES FACED DURING MY SIWES PROGRAMME

Despite the valuable learning experience, I encountered several challenges during my SIWES program at Olarewaju Construction and Metal Work.

1. Technical Challenges:

- o Initially, I faced difficulties in mastering certain welding techniques, such as achieving consistent weld quality with MIG welding. Overcoming these challenges required patience and practice, as well as guidance from experienced technicians.
- Understanding the properties of different metals and alloys was also a challenge. This knowledge is essential for selecting the appropriate welding method and ensuring that the final product meets the required specifications.

2. Safety Concerns:

- Ensuring consistent adherence to safety protocols was a challenge, especially in a fast-paced environment where the pressure to meet deadlines could sometimes compromise safety practices.
- o It was important to maintain vigilance and remind colleagues of safety protocols when necessary. Encouraging a safety-first culture helps prevent accidents and ensures a healthy work environment.

3. Logistical Challenges:

- Occasionally, delays in material delivery affected project timelines, requiring adjustments in scheduling and resource allocation. Effective communication with suppliers and colleagues helped mitigate these issues.
- Managing inventory levels was also a challenge. Ensuring that materials are available when needed without overstocking is crucial for maintaining efficiency and reducing costs.

4. Learning Curve:

- Adapting to new machinery and techniques required a steep learning curve. It
 was essential to be proactive in seeking guidance and feedback from
 experienced staff.
- Balancing theoretical knowledge with practical application was also a challenge. Some concepts learned in school needed to be adapted to real-world scenarios, which often involved improvising or finding creative solutions to unexpected problems.

5. Communication Challenges:

- ensuring that tasks were completed correctly and efficiently. However, sometimes language barriers or misunderstandings could lead to confusion.
- Overcoming these challenges involved being clear and concise in communication, asking questions when unsure, and actively listening to instructions.

CHAPTER FOUR

SUMMARY, CONCLUSION, AND RECOMMENDATION

4.1 **SUMMARY**

This report summarizes my 14-week SIWES program at Olarewaju Construction and Metal Work, a welding and fabrication industry located in Ilorin, Kwara State. During my attachment, I gained hands-on experience in various aspects of welding and fabrication, including the fabrication of metal structures, quality control, and machinery operation. I worked with a range of tools and equipment, such as MIG, ARC, and TIG welding machines, plasma cutters, and metal presses. Safety was a top priority throughout my program, and I adhered to strict safety protocols to ensure a safe working environment.

My experience included assisting in project planning, observing the operation of machinery, and participating in quality control checks. I faced several challenges, including mastering welding techniques, ensuring safety adherence, managing logistical delays, and adapting to new machinery and techniques. Despite these challenges, the program provided invaluable insights into industry practices and the importance of teamwork, safety, and adaptability in a fast-paced industrial environment.

4.2 CONCLUSION

In conclusion, my SIWES program at Olarewaju Construction and Metal Work was a transformative experience that bridged the gap between theoretical knowledge and practical application. The program not only enhanced my technical skills in welding and fabrication but also instilled in me a deep appreciation for safety protocols, quality control, and effective communication in an industrial setting.

Through this experience, I gained a comprehensive understanding of the welding and fabrication process, from material selection to final product inspection. I learned about the importance of precision, quality, and safety in ensuring that products meet customer

expectations and industry standards. The program also highlighted the challenges faced by industries in managing resources, meeting deadlines, and maintaining a safe working environment.

Overall, my SIWES experience was enriching and provided me with the skills and knowledge necessary to pursue a career in metallurgical engineering with confidence.

4.3 **RECOMMENDATION**

Based on my experience and observations during the SIWES program, I recommend the following:

1. Enhanced Training Programs:

- Olarewaju Construction and Metal Work should consider implementing more comprehensive training programs for new interns and employees. This could include detailed workshops on safety procedures, machinery operation, and quality control practices.
- Regular refresher courses for existing staff would also help maintain high standards of safety and efficiency.

2. Investment in Modern Machinery:

- The company should invest in modern machinery and technology to improve efficiency and reduce production time. This could include automated cutting tools or advanced welding machines that offer higher precision and speed.
- Upgrading equipment would also help in reducing maintenance costs and improving product quality.

3. Improved Inventory Management:

 Implementing a more efficient inventory management system would help reduce delays caused by material shortages. This could involve using software to track stock levels and automate ordering processes. Regular inventory audits would also help identify and address any discrepancies or inefficiencies in the supply chain.

4. Safety Awareness Campaigns:

- Conducting regular safety awareness campaigns for employees would reinforce the importance of adhering to safety protocols. This could include workshops, posters, and reminders about proper PPE use and emergency procedures.
- Encouraging a safety-first culture would reduce accidents and improve overall workplace safety.

5. Collaboration with Educational Institutions:

- Olarewaju Construction and Metal Work should explore opportunities for collaboration with educational institutions to provide more students with practical experience. This could involve hosting workshops, offering internships, or participating in curriculum development to ensure that students are better prepared for industry demands.
- Such collaborations would benefit both the company and the students by fostering a pipeline of skilled and knowledgeable professionals.